Skip to main content
Log in

Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast–sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Suchaneka, M. Yoshimuraa, J. Mater. Res. 13, 94–117 (1998)

    Article  ADS  Google Scholar 

  2. M. Obst, J.J. Dynes, J.R. Lawrence, G.D.W. Swerhone, C. Karunakaran, K.V. Kaznatcheev, D. Bertwistle, K. Benzerara, T. Tyliszczak, A.P. Hitchcock, Geochim. Cosmochim. Acta 73(14), 4180–4198 (2009)

    Article  ADS  Google Scholar 

  3. D.W.S. Ho, R.K. Lewis, Cem. Concr. Res. 17, 489–504 (1987)

    Article  Google Scholar 

  4. S. Sanchez-Moral, J. Garcia-Guinea, L. Luque, R. Gonzalez-Martin, P. Lopez-Arce, Mater. Construct. 54(275), 23–37 (2003)

    Article  Google Scholar 

  5. G. Cultrone, E. Sebastian, M. Ortega, Huertas. Cem. Concr. Res. 35, 2278–2289 (2005)

    Article  Google Scholar 

  6. E. Doehne, C.A. Price, Stone Conservation: An Overview of Current Research, 2nd edn. (Getty Publications, Los Angeles, 2010), p. 176

    Google Scholar 

  7. P. López-Arce, L.S. Gomez-Villalba, L. Pinho, M.E. Fernández-Valle, M. Álvarez de Buergo, R. Fort, Mater. Charact. 61(2), 168–184 (2010)

    Article  Google Scholar 

  8. J. Ashurst, in Conservation of Building and Decorative Stone: Methods of Repairing and Consolidating Stone Buildings, ed. by J. Ashurst, F.G. Dimes (Butterworth-Heinemann, London, 1990), pp. 1–54

    Google Scholar 

  9. K. Elert, C. Rodríguez-Navarro, E. Sebastián, E. Hansen, O. Cazalla, Stud. Conserv. 47(1), 62–75 (2002)

    Article  Google Scholar 

  10. P. Tiano, Coalition 6(2), 4–8 (2003)

    Google Scholar 

  11. W. De Muynck, N. De Belie, W. Verstraete, Ecol. Eng. 36(2), 118–136 (2010)

    Article  Google Scholar 

  12. J.P. Adolphe, J.F. Loubière, J. Paradas, F. Soleilhavoup, Procédé de traitement biologique d’une surface artificielle, European patent 90400G97.0. (after French patent 8903517, 1989) (1990)

  13. C. Rodriguez-Navarro, M. Rodriguez-Gallego, K.B. Chekroun, M.T. González-Muñoz, Appl. Environ. Microbiol. 69(4), 2182–2193 (2003)

    Article  Google Scholar 

  14. S. Sequeira, C. Casanova, E.J. Cabrita, J. Cult. Herit. 7(4), 264–272 (2006)

    Article  Google Scholar 

  15. P. Baglioni, D. Chelazzi, R. Giorgi, G. Poggi, Langmuir 29, 5110–5122 (2013)

    Article  Google Scholar 

  16. P. López-Arce, A. Zornoza-Indart, L. Gomez-Villalba, R. Fort, J. Mater. Civ. Eng. 25(11), 1655–1665 (2013)

    Article  Google Scholar 

  17. A. Arizzi, L.S. Gomez-Villalba, P. Lopez-Arce, G. Cultrone, R. Fort, Eur. J. Miner. (2015). doi:10.1127/ejm/2015/0027-2437

    Google Scholar 

  18. R. Giorgi, L. Dei, P. Baglioni, Stud. Conserv. 45, 154–161 (2000)

    Article  Google Scholar 

  19. V. Daniele, G. Taglieri, R. Quaresima, J. Cult. Herit. 9, 294–301 (2008)

    Article  Google Scholar 

  20. P. Lopez-Arce, L.S. Gomez-Villalba, S. Martinez-Ramirez, M. Alvarez de Buergo, r. Powder Technol. 205(1), 263–269 (2011)

    Article  Google Scholar 

  21. L.S. Gomez-Villalba, P. Lopez-Arce, M. Alvarez de Buergo, R. Fort, Appl. Phys. A Mater. 104, 1249–1254 (2011)

    Article  ADS  Google Scholar 

  22. T. Yang, B. Keller, E. Magyari, K. Hametner, D. Günther, J. Mater. Sci. 38, 1909–1916 (2003)

    Article  ADS  Google Scholar 

  23. D.T. Beruto, R. Botter, J. Eur. Ceram. Soc. 20, 497–503 (2000)

    Article  Google Scholar 

  24. K. Van Balen, D. Van Gemert, Mater. Struct. 27, 393–398 (1994)

    Article  Google Scholar 

  25. K. Van Balen, Cem. Concr. Res. 35, 647–657 (2005)

    Article  Google Scholar 

  26. R.M. Dheilly, J. Tudo, Y. Sebai bi, M. Quéneudec, Constr. Build. Mater. 16, 155–161 (2002)

    Article  Google Scholar 

  27. J.H.M. Visser, Constr. Build. Mater. 67, 8–13 (2014)

    Article  Google Scholar 

  28. Ö. Cizer, C. Rodriguez-Navarro, E. Ruiz-Agudo, J. Elsen, D. Van Gemert, K. Van Balen, J. Mater. Sci. 47, 6151–6165 (2012)

    Article  ADS  Google Scholar 

  29. R.C. Smallegange, W.H. Schmied, K.J. Van Roey, N.O. Verhulst, J. Spitzen, W.R. Mukabana, W. Takken, Malar. J. 9(292), 1–15 (2010)

    Google Scholar 

  30. Y. Saitoh, J. Hattori, S. Chinone, N. Nihei, Y. Tsuda, H. Kurahashi, M. Kobayashi, J. Am. Mosq. Contr. 20, 261–264 (2004)

    Google Scholar 

  31. J.P. Van Dijken, R.A. Weusthuis, J.T. Pronk, Anton. Leeuw. Int. J. G 63(3–4), 343–352 (1993)

    Article  Google Scholar 

  32. J.A. Barnett, Yeast 20(6), 509–543 (2003)

    Article  Google Scholar 

  33. G. Walker, P. Dijck, in Yeasts in Food and Beverages: Physiological and Molecular Responses of Yeasts to the Environment, ed. by A. Querol, G.H. Fleet (Springer, Berlin, 2006), pp. 111–152

    Chapter  Google Scholar 

  34. L. Dei, B. Salvadori, J. Cult. Herit. 7(2), 110–115 (2006)

    Article  Google Scholar 

  35. G. Ziegenbald, in Proceedings of 11th International Congress on Deterioration and Conservation of Stone III (2008), p. 1109

  36. L.S. Gomez-Villalba, P. Lopez-Arce, R. Fort, Appl. Phys. A Mater. 106(1), 213–217 (2012)

    Article  ADS  Google Scholar 

  37. A. Calia, M. Laurenzi Tabasso, A.M. Mecchi, G. Quarta, in Stone in Historic Buildings: Characterization and Performance, The Study of Stone for Conservation Purposes: Lecce STONE (southern Italy), eds. by Cassar et al., (Special Publications, Geological Society, London, 2013), p. 391

  38. E. Vasanelli, M. Sileo, A. Calia, A.M. Aiello, Proc. Chem. 8, 35–44 (2013)

    Article  Google Scholar 

  39. A. La Iglesia, M.A. Garcia del Cura, S. Ordonez, A. Bernabeu, Geogaceta 23, 79–82 (1998)

    Google Scholar 

  40. Bateig Piedra Natural SA, Determinacion de la densidad aparente y porosidad abierta UNE-EN 1936:2007, Report 142208 (Aidico, Instituto Tecnologico de la Construccion, Alicante, 2014)

    Google Scholar 

  41. ASTM E313-73, Practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates (1993)

  42. ISO 2470-2, Paper, board and pulps–Measurement of diffuse blue reflectance factor (ISO brightness) (1999)

  43. AENOR UNE-EN 1936, Natural stone test methods. Determination of real density and apparent density, and of total and open porosity (2007)

  44. AENOR UNE-EN 15801, Conservation of cultural property- Test methods- Determination of water absorption by capillarity (2010)

  45. ASTM A956-12, Standard Test Method for Leeb Hardness Testing of Steel Products (2006)

  46. C. Rodriguez-Navarro, A. Suzuki, E. Ruiz-Agudo, Langmuir 29, 11457–11470 (2013)

    Article  Google Scholar 

  47. L.S. Gomez-Villalba, P. Lopez-Arce, M. Alvarez de Buergo, R. Fort, Cryst. Growth Des. 12(10), 4844–4852 (2012)

    Article  Google Scholar 

  48. S.F. Chen, S.H. Yu, J. Jiang, F. Li, Y. Liu, Chem. Mater. 18, 115–122 (2006)

    Article  Google Scholar 

  49. F. Manoli, E. Dalas, J. Cryst. Growth 218, 359–364 (2000)

    Article  ADS  Google Scholar 

  50. Ö. Cizer, K. Van Balen, J. Elsen, D. Van Gemert, Constr. Build. Mater. 35, 741–751 (2012)

    Article  Google Scholar 

  51. E.M. Flaten, M. Seiersten, J.P. Andreassen, J. Cryst. Growth 311(13), 3533–3538 (2009)

    Article  ADS  Google Scholar 

  52. F. Ossola, P. Tomasin, C. De Zorzi, N. El Habra, M. Chiurato, M. Favaro, New J. Chem. 36, 2618–2624 (2012)

    Article  Google Scholar 

  53. A. Moropoulou, A. Bakolas, K. Bisbikou, Thermochim. Acta 269, 779–795 (1995)

    Article  Google Scholar 

  54. J. Perić, M. Vučak, R. Krstulović, Lj. Brečević, D. Kralj. Thermochim. Acta 277, 175–176 (1996)

    Article  Google Scholar 

  55. NORMAL 20/85, Interventi conservativi: progettazione esecuzione e valutazione preventive (1996)

  56. D. Benavente, F. Martinez-Verdu, A. Bernabeu, V. Viqueira, R. Fort, M.A. Garcia del Cura, C. Illueca, S. Ordoñez, Color Res. Appl. 28, 343–351 (2003)

    Article  Google Scholar 

  57. J.D. Rodrigues, A. Grossi, J. Cult. Herit. 8, 32–43 (2007)

    Article  Google Scholar 

  58. D.R. Moorehead, Cem. Concr. Res. 16(5), 700–708 (1986)

    Article  Google Scholar 

  59. C. Rodriguez-Navarro, E. Ruiz-Agudo, M. Ortega-Huertas, E. Hansen, Langmuir 21, 10948–10957 (2005)

    Article  Google Scholar 

  60. D. Benavente, in Utilización de rocas y minerales industriales: Propiedades físicas y utilización de rocas ornamentales, ed. by M.A. Garcia del Cura, J.C. Cañaveras (Universidad de Alicante, Alicante, 2006), pp. 123–153

    Google Scholar 

  61. F.G. Bell, Engineering properties of soils and rocks, 4th edn. (Blackwell, Oxford, 2000), p. 496

    Google Scholar 

Download references

Acknowledgments

This work was carried out at Instituto de Geociencias (CSIC,UCM) and supported by Rafael Fort and GEOMATERIALES (S2009/MAT-1629) Program and by a JAE-PreDoc CSIC fellowship founded by the European Social Fund FSE 2007–2013. Thanks to Iván Serrano for his help with the XRD analyses at the Department of Petrology and Geochemistry, Faculty of Geology (UCM) and to Xabier Arroyo for the DTA-TG analyses at the CAI of Faculty of Geology (UCM). Thanks also to Ana Vicente for the SEM–EDS analyses performed at the ICTS, Centro Nacional de Microscopia Electronica (UCM) and Dr. Maria Jose Varas (UCM) for founding the SEM analyses. Special thanks go to the technician Andres Lira from IGEO (CSIC, UCM) for his useful ideas and valuable help with the set up to perform part of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lopez-Arce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Arce, P., Zornoza-Indart, A. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation. Appl. Phys. A 120, 1475–1495 (2015). https://doi.org/10.1007/s00339-015-9341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9341-7

Keywords

Navigation