Skip to main content
Log in

The efficiency of nanolime and dibasic ammonium phosphate in the consolidation of beige limestone from the Pasargadae World Heritage Site

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 10 July 2019

This article has been updated

Abstract

The limestone used at the Pasargadae World Heritage Site in Iran, an outstanding open-air architectural heritage site dating from the Achaemenid period (sixth century BC), has suffered weathering due to interaction with the environment. It was built out of beige limestone that today shows scaling and pitting decay patterns. Two inorganic consolidating products that are very promising: nanolime and dibasic ammonium phosphate (DAP) were considered for the consolidation of the limestone. Consolidation treatments were conducted on samples from a quarry and applied using a paintbrush with 50% nanolime dispersion in isopropyl alcohol and 1.0 M DAP water solution. Superficial consolidation was evaluated by means of a micro-drilling resistance test, and color changes were assessed by spectrophotometry. The microstructure of the treated samples was observed using FE-SEM. The efficacy of the two consolidation treatments was also assessed by testing their hydric properties and durability (hydric tests, freeze-thaw, and salt crystallization cycles). The compactness in the altered samples was monitored by measuring the ultrasound propagation velocity. We found that the superficial resistance increased in a similar way with both treatments. However, spectrophotometry revealed a yellowish color in the samples treated with DAP. During FE-SEM observations, some diffused microcracks were detected on the surface of DAP treatment. When subjected to accelerated aging tests, both treatments managed to postpone the formation of the first microcrack during the freeze-thaw test and both showed outstanding stability during salt crystallization cycles. In conclusion, the nanolime product seems to be more compatible with beige limestone because it does not affect its aesthetic qualities (color, lightness, and a homogeneous layer formed on the surface of the stone). Moreover, previous research found that lime has a low propensity for biological growth. This supports its use as a consolidating product for the stone used in open-air archeological sites that are prone to microbial growth, such as the beige stone used in the Pasargadae WHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 10 July 2019

    The original version of this article, unfortunately, contained error. The replacement Figs. 3, 6 and 7 provided during correction stage were not carried out. Given in the article are the correct figures. The original article has been corrected.

References

  • Al-Omari A, Beck K, Brunetaud X, Török Á, Al-Mukhtar M (2015) Critical degree of saturation: a control factor of freeze–thaw damage of porous limestones at Castle of Chambord, France. Eng Geol 185:71–80

    Article  Google Scholar 

  • Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P (2001) Colloidal particles of Ca (OH) 2: properties and applications to restoration of frescoes. Langmuir 17(14):4251–4255

    Article  Google Scholar 

  • ASTMD 2845-05 (2005) Standard method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM D2845-05

  • Barriuso BC, Botticelli G, Cuzman OA, Osticioli I, Tiano P, Matteini M (2017) Conservation of calcareous stone monuments: screening different diammonium phosphate based formulations for countering phototrophic colonization. J Cult Herit 27:97–106

    Article  Google Scholar 

  • Beck K, Al-Mukhtar M (2010) Evaluation of the compatibility of building limestones from salt crystallization experiments. Geol Soc Lond Spec Publ 333(1):111–118

    Article  Google Scholar 

  • Benavente D, del Cura MG, Bernabéu A, Ordóñez S (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng Geol 59(3–4):313–325

    Article  Google Scholar 

  • Benavente D, Martínez-Verdú F, Bernabeu A et al (2003) Influence of surface roughness on color changes in building stones. Color research & application: endorsed by inter-society color council, the colour group (Great Britain), Canadian Society for Color, color science Association of Japan, Dutch Society for the Study of color, the Swedish colour Centre Foundation, colour Society of Australia. Centre Français de la Couleur 28(5):343–351

    Google Scholar 

  • Boardman J (2000) Persia and the West: an archaeological investigation of the genesis of Achaemenid art. Thames & Hudson

  • Borsoi G, Tavares M, Veiga R, Silva AS (2012) Microstructural characterization of consolidant products for historical renders: an innovative nanostructured lime dispersion and a more traditional ethyl silicate limewater solution. Microsc Microanal 18(5):1181–1189

    Article  Google Scholar 

  • Borsoi G, Lubelli B, van Hees R, Veiga R, Silva AS (2016a) Optimization of nanolime solvent for the consolidation of coarse porous limestone. Applied Physics A 122(9):846

    Article  Google Scholar 

  • Borsoi G, Lubelli B, van Hees R, Veiga R, Silva AS (2016b) Understanding the transport of nanolime consolidants within Maastricht limestone. J Cult Herit 18:242–249

    Article  Google Scholar 

  • Borsoi G, Lubelli B, van Hees R, Veiga R, Silva AS (2017) Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr Build Mater 142:385–394

    Article  Google Scholar 

  • Carretti E, Dei L (2004) Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Prog Org Coat 49(3):282–289

    Article  Google Scholar 

  • Chiantore O, Lazzari M (2001) Photo-oxidative stability of paraloid acrylic protective polymers. Polymer 42(1):17–27

    Article  Google Scholar 

  • Cnudde V, Dierick M, Vlassenbroeck J, Masschaele B, Lehmann E, Jacobs P, Van Hoorebeke L (2008) High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials. Nucl Instrum Methods Phys Res Sect B 266(1):155–163

    Article  Google Scholar 

  • Daniele V, Taglieri G, Quaresima R (2008) The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process. J Cult Herit 9(3):294–301

    Article  Google Scholar 

  • Dei L, Salvadori B (2006) Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit 7(2):110–115

    Article  Google Scholar 

  • Delgado Rodrigues J (2001) Consolidation of decayed stones. A delicate problem with few practical solutions. Historical Constructions, Guimarães. Portugal, pp 3–14

  • Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10(4):334

    Article  Google Scholar 

  • Fidler J (2002) Lime treatments: an overview of lime watering and shelter coating of friable historic limestone masonry. English Heritage Res Trans 2:19–28

    Google Scholar 

  • Franzoni E, Graziani G, Sassoni E, Bacilieri G, Griffa M, Lura P (2015a) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Mater Struct 48(11):3503–3515

    Article  Google Scholar 

  • Franzoni E, Sassoni E, Graziani G (2015b) Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. J Cult Herit 16(2):173–184

    Article  Google Scholar 

  • Giorgi R, Dei L, Baglioni P (2000) A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud Conserv 45(3):154–161

    Google Scholar 

  • Graziani G, Sassoni E, Franzoni E (2015) Consolidation of porous carbonate stones by an innovative phosphate treatment: mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Heritage Science 3(1):1

    Article  Google Scholar 

  • Graziani G, Sassoni E, Franzoni E, Scherer GW (2016) Hydroxyapatite coatings for marble protection: optimization of calcite covering and acid resistance. Appl Surf Sci 368:241–257

    Article  Google Scholar 

  • Graziani G, Sassoni E, Scherer GW, Franzoni E (2017a) Penetration depth and redistribution of an aqueous ammonium phosphate solution used for porous limestone consolidation by brushing and immersion. Constr Build Mater 148:571–578

    Article  Google Scholar 

  • Graziani G, Sassoni E, Scherer GW, Franzoni E (2017b) Resistance to simulated rain of hydroxyapatite-and calcium oxalate-based coatings for protection of marble against corrosion. Corros Sci 127:168–174

    Article  Google Scholar 

  • Graziani G, Sassoni E. Scherer G W, Franzoni E (2018) Phosphate-based treatments for consolidation of salt-bearing Globigerina limestone. In IOP Conference Series: Materials Science and Engineering (Vol 364, No 1, p 012082). IOP Publishing

  • Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Color changes in architectural limestones from pollution and cleaning. Color Res Appl 32:320–331

    Article  Google Scholar 

  • Hansen E, Doehne E, Fidler J, Larson J, Martin B, Matteini M, Rodriguez-Navarro C, Pardo ES, Price C, de Tagle A, Teutonico JM, Weiss N (2003) A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Stud Conserv 48(sup1):13–25

    Article  Google Scholar 

  • López-Arce P, Gómez-Villalba LS, Martínez-Ramírez S, de Buergo MÁ, Fort R (2011) Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder Technol 205(1–3):263–269

    Article  Google Scholar 

  • Martys NS, Ferraris CF (1997) Capillary transport in mortars and concrete. Cem Concr Res 27(5):747–760

    Article  Google Scholar 

  • Matteini M (2008) Inorganic treatments for the consolidation and protection of stone artefacts. Conserv Sci Cultural Heritage 8(1):13–27

    Google Scholar 

  • Matteini M, Rescic S, Fratini F, Botticelli G (2011) Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: preliminary research. Int J Archit Herit 5(6):717–736

    Article  Google Scholar 

  • Mohammadi P, Maghboli-Balasjin N (2014) Isolation and molecular identification of deteriorating fungi from Cyrus the Great tomb stones. Iran J Microbiol 6(5):361–370

    Google Scholar 

  • Molina E, Rueda-Quero L, Benavente D, Burgos-Cara A, Ruiz-Agudo E, Cultrone G (2017) Gypsum crust as a source of calcium for the consolidation of carbonate stones using a calcium phosphate-based consolidant. Constr Build Mater 143:298–311

    Article  Google Scholar 

  • Naidu S, Scherer GW (2014) Nucleation, growth and evolution of calcium phosphate films on calcite. J Colloid Interface Sci 435:128–137

    Article  Google Scholar 

  • Natali I, Saladino ML, Andriulo F, Martino DC, Caponetti E, Carretti E, Dei L (2014) Consolidation and protection by nanolime: recent advances for the conservation of the graffiti, Carceri dello Steri Palermo and of the 18th century lunettes, SS. Giuda e Simone Cloister, Corniola (Empoli). J Cult Herit 15(2):151–158

    Article  Google Scholar 

  • NORMAL 29/88 (1988) Misura dell’indice di asciugamento (drying index). CNR-ICR, Rome, Italy

    Google Scholar 

  • Otero J, Starinieri V, Charola AE (2018) Nanolime for the consolidation of lime mortars: a comparison of three available products. Constr Build Mater 181:394–407

    Article  Google Scholar 

  • Possenti E, Colombo C, Bersani D, Bertasa M, Botteon A, Conti C, Lottici PP, Realini M (2016) New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach. Microchem J 127:79–86

    Article  Google Scholar 

  • Price C A, Doehne E (2011) Stone conservation: an overview of current research. Getty Publications

  • Rodrigues JD, Grossi A (2007) Indicators and ratings for the compatibility assessment of conservation actions. J Cult Herit 8(1):32–43

    Article  Google Scholar 

  • Rodrigues JD, Pinto APF, Nogueira R, Gomes A (2018) Consolidation of lime mortars with ethyl silicate, nanolime and barium hydroxide. Effectiveness assessment with microdrilling data. J Cult Herit 29:43–53

    Article  Google Scholar 

  • Rodriguez-Navarro C, Suzuki A, Ruiz-Agudo E (2013) Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir 29(36):11457–11470

    Article  Google Scholar 

  • Sasse HS, Snethlage R (1996) Methods for the evaluation of stone conservation treatments, in: Baer NS, Snethlage R (Eds.), Report of Dahlem workshop on saving our architectural heritage, Berlin, p 225

  • Sassoni E, Naidu S, Scherer GW (2011) The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J Cult Herit 12(4):346–355

    Article  Google Scholar 

  • Sassoni E, Graziani G, Franzoni E (2015) Repair of sugaring marble by ammonium phosphate: comparison with ethyl silicate and ammonium oxalate and pilot application to historic artifact. Mater Des 88:1145–1157

    Article  Google Scholar 

  • Sassoni E, Graziani G, Franzoni E (2016) An innovative phosphate-based consolidant for limestone. Part 1: effectiveness and compatibility in comparison with ethyl silicate. Constr Build Mater 102:918–930

    Article  Google Scholar 

  • Sassoni E (2018) Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: a review. Materials 11(4):557

    Article  Google Scholar 

  • Sassoni E, Graziani G, Franzoni E, Scherer GW (2018) Calcium phosphate coatings for marble conservation: influence of ethanol and isopropanol addition to the precipitation medium on the coating microstructure and performance. Corros Sci 136:255–267

    Article  Google Scholar 

  • Scherer GW (1990) Theory of drying. J Am Ceram Soc 73(1):3–14

    Article  Google Scholar 

  • Shekofteh A, Molina E, Arizzi A, Cultrone G, Ahmadi H, Yazdi M (2016) Deterioration assessment of three types of limestones from Pasargadae World Heritage Site in Iran, 5th international conference YOCOCU 2016 (youth in conservation of cultural heritage), Madrid, Spain: 72-76

  • Shekofteh A, Molina E, Arizzi A, Cultrone G, Ahmadi H, Yazdi M (2018) Characterization and damage assessment of stones used in Pasargadae World Heritage Site, Achamenian period. Int J Archit Herit 13:521–536. https://doi.org/10.1080/15583058.2018.1436728

    Article  Google Scholar 

  • Shekofteh A (2018) Consolidation methodology for carbonate stones used in Pasargadae historic site, Doctoral dissertation, Art University of Isfahan, Iran

  • Sierra-Fernandez A, Gomez-Villalba LS, De la Rosa-García SC et al (2018) Inorganic nanomaterials for the consolidation and antifungal protection of stone heritage. In: In Advanced Materials for the Conservation of Stone. Springer, Cham, pp 125–149

    Chapter  Google Scholar 

  • Sohrabi M, Favero-Longo SE, Pérez-Ortega S, Ascaso C, Haghighat Z, Talebian MH, Fadaei H, de los Ríos A (2017) Lichen colonization and associated deterioration processes in Pasargadae, UNESCO world heritage site, Iran. Int Biodeterior Biodegradation 117:171–182

    Article  Google Scholar 

  • Song Y, Hahn HH, Hoffmann E (2002) The effect of carbonate on the precipitation of calcium phosphate. Environ Technol 23(2):207–215

    Article  Google Scholar 

  • Stronach D (1985) Pasargadae, in The Cambridge History of Iran. In: Gershevitch I (ed) the Median and Achaemenian periods, II edn. Cambridge University Press, Cambridge, pp 838–855

    Google Scholar 

  • Tiano P (1995) Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules. Stud Conserv 40(3):171–176

    Google Scholar 

  • Tilia AB (1968) A study on the methods of working and restoring stone and on the parts left unfinished in Achaemenian architecture and sculpture. East and West 18(1/2):67–95

    Google Scholar 

  • UNE-EN 1925 (2000) Natural stone test methods. Determination of water absorption coefficient by capillarity. In: AENOR. Madrid, Spain

    Google Scholar 

  • UNE-EN 12370 (2001) Metodi di prova per pietre naturali. Determinazione della resistenza alla cristallizzazione dei sali. CNRICR, Rome, Italy

    Google Scholar 

  • UNE-EN 1936 (2007) Natural stone test methods. Determination of real density and apparent density, and of total and open porosity. In: AENOR. Madrid, Spain

    Google Scholar 

  • UNE-EN 13755 (2008) Natural stone test methods. Determination of water absorption at atmospheric pressure. In: AENOR. Madrid, Spain

    Google Scholar 

  • UNE-EN 15803 (2010) Conservación del patrimonio cultural. Métodos de ensayo. Determinación de la permeabilidad al vapor de agua, AENOR, Madrid, Spain

  • UNE-EN 12371 (2011) Natural stone test methods. Determination of frost resistance. AENOR, Madrid, Spain

    Google Scholar 

  • UNE-EN 15886 (2011) Conservation of cultural property. Test methods. Colour measurement of surfaces, AENOR, Madrid, Spain

  • van Hees R, Lubelli B, Nijland T, Bernar A (2014) Compatibility and performance criteria for nanolime consolidants. Proceedings of the 9th International Symposium on the Conservation of Monuments in the Mediterranean Basin- Monubasin, 3–5 June 2014. Ankara

  • Vasanelli E, Calia A, Luprano V, Micelli F (2017) Ultrasonic pulse velocity test for non-destructive investigations of historical masonries: an experimental study of the effect of frequency and applied load on the response of a limestone. Mater Struct 50(1):38

    Article  Google Scholar 

  • Wheeler G, Goins ES (2005) Alkoxysilanes and the consolidation of stone. Getty Publications, Los Angeles

    Google Scholar 

  • Yang F, Liu Y, Zuo G, Wang X, Hua P, Ma Q, Dong G, Yue Y, Zhang B (2014) Hydroxyapatite conversion layer for the preservation of surface gypsification marble relics. Corros Sci 88:6–9

    Article  Google Scholar 

  • Zornoza-Indart A, López-Arce P, López-Polín L (2017) Durability of traditional and new nanoparticle based consolidating products for the treatment of archaeological stone tools: chert artifacts from Atapuerca sites (Burgos, Spain). J Cult Herit 24:9–21

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Iranian Ministry of Science, Research and Technology for financial support. We further thank the Centro de Instrumentación Científica (CIC; University of Granada, Spain) for the assistance with SEM-EDX analyses; Prof. Carlos Rodriguez-Navarro, Prof. Eduardo Sebastián Pardo, Dr. Encarnación Ruiz Agudo, and Dr. Alejandro Burgos-Cara from the Department of Mineralogy and Petrology of the University of Granada, Spain; Georgios Tavlaridis (Independent Conservation Scientist); Dr. Omid Oudbashi and Dr. Hossein Ahmadi (Art University of Isfahan, Iran); Dr. Mehdi Yazdi (University of Isfahan, Iran); Dr. Hamid Fadaei (Administrator of the Persepolis WHS, Fars, Iran); Farzaneh Gerami, Ali Taghva and Hamidreza Karami (Foundation of Pasargadae WHS, Iran).

Funding

This study received financial support from Research Group RNM179 of the Junta de Andalucía and Research Project MAT2016-75889-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Shekofteh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The replacement figures 3, 6 and 7 provided during correction stage were not carried out. Given in the article are the correct figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekofteh, A., Molina, E., Rueda-Quero, L. et al. The efficiency of nanolime and dibasic ammonium phosphate in the consolidation of beige limestone from the Pasargadae World Heritage Site. Archaeol Anthropol Sci 11, 5065–5080 (2019). https://doi.org/10.1007/s12520-019-00863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-019-00863-y

Keywords

Navigation