Skip to main content
Log in

Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase and morphology evolution of CaCO3 precipitated during carbonation of lime pastes via the reaction Ca(OH)2 + CO2 → CaCO3 + H2O has been investigated under different conditions (pCO2 ≈ 10−3.5 atm at 60 % RH and 93 % RH; pCO2 = 1 atm at 93 % RH) using XRD, FTIR, TGA, and SEM. Simulations of the pore solution chemistry for different stages and conditions of carbonation were performed using the PHREEQC code to investigate the evolution of the chemistry of the system. Results indicate initial precipitation of amorphous calcium carbonate (ACC) which in turn transforms into scalenohedral calcite under excess Ca2+ ions. Because of their polar character, \( \left\{ {21\bar{3}4} \right\} \) scalenohedral faces (type S) interact more strongly with excess Ca2+ than non-polar \( \left\{ {10\bar{1}4} \right\} \) rhombohedral faces (type F), an effect that ultimately favors the stabilization of \( \left\{ {21\bar{3}4} \right\} \) faces. Following the full consumption of Ca2+ ions and further dissolution of CO2 leading to a pH drop of the pore solution, \( \left\{ {21\bar{3}4} \right\} \) scalenohedra are subjected to dissolution. This eventually results in re-precipitation of \( \left\{ {10\bar{1}4} \right\} \) rhombohedra at close-to-neutral pH. This crystallization sequence progresses through the carbonated depth with a strong dependence on the degree of exposure to CO2, which is controlled by the carbonated pore structure governing the diffusion of CO2. Both the carbonation process and the scalenohedral-to-rhombohedral transformation are kinetically favored under high RH and high pCO2. Supersaturation plays a critical role on the nucleation density and size of CaCO3 crystals. These results have important implications in understanding the behavior of ancient and modern lime mortars for applications in architectural heritage conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gillott JE (1967) J Appl Chem 17:185

    Article  CAS  Google Scholar 

  2. Boynton RS (1981) Chemistry and technology of lime and limestone. Wiley, New York

    Google Scholar 

  3. Yagi H, Iwazawa A, Sonobe R, Matsubara T, Hikita H (1984) Ind Eng Chem Fundam 23:153

    Article  CAS  Google Scholar 

  4. Uebo K, Yamazaki R, Yoshida K (1992) Adv Powder Technol 3:71

    Article  CAS  Google Scholar 

  5. Chen PC, Tai CY, Lee KC (1997) Chem Eng Sci 52:4171

    Article  CAS  Google Scholar 

  6. Jung WM, Kang SH, Kim WS, Choi CK (2000) Chem Eng Sci 55:733

    Article  CAS  Google Scholar 

  7. Garcia-Carmona J, Gomez Morales J, Rodriguez Clemente R (2003) J Coll Interface Sci 261:434

    Article  CAS  Google Scholar 

  8. Garcia-Carmona J, Gomez Morales J, Rodriguez Clemente R (2003) J Crystl Growth 249:561

    Article  CAS  Google Scholar 

  9. Domingo C, Loste E, Gómez-Morales J, García-Carmona J, Fraile J (2006) J Supercritical Fluids 36:202

    Article  CAS  Google Scholar 

  10. Moorehead DR (1986) Cem Concr Res 16:700

    Article  CAS  Google Scholar 

  11. Van Balen K, Van Gemert D (1994) Mater Struct 27:393

    Article  Google Scholar 

  12. Rodriguez-Navarro C, Hansen EF, Ginell WS (1998) J Am Ceram Soc 81:3032

    Article  CAS  Google Scholar 

  13. Cazalla O, Rodriguez-Navarro C, Sebastián E, Cultrone G (2000) J Am Ceram Soc 83:1070

    Article  CAS  Google Scholar 

  14. Elert K, Rodriguez-Navarro C, Pardo ES, Hansen E, Cazalla O (2002) Stud Conserv 47:62

    Article  CAS  Google Scholar 

  15. Sanchez-Moral S, Garcia-Guinea J, Luque L, Gonzalez-Martin R, Lopez-Arce P (2004) Mater Constr 54:23

    Article  CAS  Google Scholar 

  16. Cultrone G, Sebastian E, Ortega Huertas M (2005) Cem Concr Res 35:2278

    Article  CAS  Google Scholar 

  17. Van Balen K (2005) Cem Concr Res 35:647

    Article  Google Scholar 

  18. Hansen EF, Van Balen K, Rodriguez-Navarro C (2005) In: International building lime symposium. National Lime Association, Orlando

  19. Hansen EF, Rodriguez-Navarro C, Van Balen K (2008) Stud Conserv 53:9

    CAS  Google Scholar 

  20. Beruto DT, Barberis F, Botter R (2005) J Cult Herit 6:253

    Article  Google Scholar 

  21. Van Balen K, Papayianni I, Van Hees R, Binda L, Waldum A (2005) Mater Struct 38:781

    Article  Google Scholar 

  22. Rodriguez-Navarro C, Cazalla O, Elert K, Sebastián E (2002) Proc Royal Soc Lond A 458:2261

    Article  CAS  Google Scholar 

  23. Verbeck GJ (1958) In: Cement and concrete. ASTM special technical publications no. 205. ASTM, Baltimore

  24. Richardson MG (1988) Carbonation of reinforced concrete: its causes and management. Citis Ltd, Dublin

    Google Scholar 

  25. Taylor HFW (1997) In: Cement chemistry. Thomas Telford Publishing, London

    Book  Google Scholar 

  26. Papadakis VG, Vayenas CG, Fardis MN (1991) ACI Mater J 88:363

    CAS  Google Scholar 

  27. Saetta AV, Schrefler BA, Vitaliani RV (1995) Cem Concr Res 25:1703

    Article  CAS  Google Scholar 

  28. Van Balen K, Van den Brande C, Toumbakari EE, Van Gemert D (1997) In: 10th International congress on the chemistry of cement, Amarkai AB and Congrex Goteborg AB, Gothenburg, 4IV010

  29. Lippman F (1973) In: Sedimentary carbonate minerals. Springer-Verlag, New York

    Google Scholar 

  30. Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodríguez-Gallego M (2007) Geochim Cosmochim Acta 71:1197

    Article  CAS  Google Scholar 

  31. Kostov I, Kostov RI (1997) In: The habit of minerals. MIR Publications, Moscow

    Google Scholar 

  32. Garcia-Carmona J, Morales JG, Sáinz JF, Loste E, Clemente RR (2004) J Cryst Growth 262:479

    Article  Google Scholar 

  33. Elfil H, Roques H (2001) Desalination 137:177

    Article  CAS  Google Scholar 

  34. Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Science 299:1205

    Article  CAS  Google Scholar 

  35. Pontoni D, Bolze J, Dingenouts N, Narayanan T, Balleuff M (2003) J Phys Chem B 107:5123

    Article  CAS  Google Scholar 

  36. Ajikumar PK, Wong LG, Subramanyam G, Lakshminarayanan R, Valiyaveettil S (2005) Cryst Growth Des 5:1129

    Article  CAS  Google Scholar 

  37. Haüy RJ (1784) In: Essai d′une theorie sur le structure des crystaux appliquée à plusieurs genre de substances crystallisées, VIII 236. Gogué et Née de la Rochelle Libraires, Paris

  38. Kashkai MA, Aliev RM (1970) Miner Mag 37:929

    Article  CAS  Google Scholar 

  39. De Silva P, Bucea L, Moorehead DR, Sirivivtananon V (2006) Cem Conc Comp 28:613

    Article  Google Scholar 

  40. Cizer Ö, Van Balen K, Elsen J, Van Gemert D (2008) In: Baciocchi R, Costa G, Polettini A, Pomi R (eds) 2nd International conference on accelerated carbonation for environmental and materials engineering, Rome

  41. Parkhurst DL, Appelo CAJ (2000) In: U.S. Geological Survey Water-Resources Investigation Report 99-4259

  42. Brečević L, Nielsen AE (1989) J Cryst Growth 98:504

    Article  Google Scholar 

  43. Gadsden JA (1975) In: Infrared spectra of minerals and related inorganic compounds. Butterworths, New York

    Google Scholar 

  44. Taylor DR, Crowther RS, Cozart JC, Sharrock P, Wu J, Soloway RD (1995) Hepathology 22:488

    CAS  Google Scholar 

  45. Wang C, Zhao J, Zhao X, Bala H, Wang Z (2006) Powder Technol 163:134

    Article  CAS  Google Scholar 

  46. Aizenberg J, Lambert G, Weiner S, Addadi L (2002) J Am Chem Soc 124:32

    Article  CAS  Google Scholar 

  47. Addadi L, Raz S, Weiner S (2003) Adv Mater 15:959

    Article  CAS  Google Scholar 

  48. Farmer VC (1974) In: The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  49. Koga N, Yamame Y (2008) J Therm Anal Calorim 94:379

    Article  CAS  Google Scholar 

  50. Gunasekaran S, Anbalangan G, Pandi S (2006) J Raman Spectrosc 37:892

    Article  CAS  Google Scholar 

  51. Yang T, Keller B, Magyari E, Hatmetner K, Günther D (2003) J Mater Sci 38:1909. doi:10.1023/A:1023544228319

    Article  CAS  Google Scholar 

  52. Beruto DT, Botter R (2000) J Eur Ceram Soc 20:497

    Article  CAS  Google Scholar 

  53. Koga N, Nakagoe Y, Tanaka H (1998) Thermochim Acta 318:239

    Article  CAS  Google Scholar 

  54. Xu X, Tark Han J, Kim DH, Cho K (2006) J Phys Chem B 110:2764

    Article  CAS  Google Scholar 

  55. Tadros ME, Skalny J, Kalyoncu RS (1976) J Coll Interface Sci 55:20

    Article  CAS  Google Scholar 

  56. Tai C, Chen FB (1998) AIChE J 44:1790

    Article  CAS  Google Scholar 

  57. Sunagawa I (1981) Bull Mineral 104:81

    CAS  Google Scholar 

  58. Reddy M, Plummer LN, Busenberg E (1981) Geochim Cosmochim Acta 45:1281

    Article  CAS  Google Scholar 

  59. Han YS, Hadiko G, Fuji M, Takahashi M (2006) J Mater Sci 41:4663. doi:10.1007/s10853-006-0037-4

    Article  CAS  Google Scholar 

  60. Page MG, Cölfen H (2006) Cryst Growth Des 6:1915

    Article  CAS  Google Scholar 

  61. Morse JW, Arvidson RS (2002) Earth Sci Rev 58:51

    Article  CAS  Google Scholar 

  62. Ogino T, Suzuki T, Kawada K (1987) Geochim Cosmochim Acta 51:2757

    Article  CAS  Google Scholar 

  63. Clarkson JR, Price TJ, Adams CJ (1992) J Chem Soc, Faraday Trans 88:243

    Article  CAS  Google Scholar 

  64. Kawano J, Shimobayashi N, Kitamura M, Shinoda K, Aikawa N (2002) J Cryst Growth 237–239:419

    Article  Google Scholar 

  65. Kitamura M (2002) J Cryst Growth 237–239:2205

    Article  Google Scholar 

  66. Kim WS, Hirasawa I, Kim WS (2004) Ind Eng Chem Res 43:2650

    Article  CAS  Google Scholar 

  67. Andreassen JP (2005) J Cryst Growth 274:256

    Article  CAS  Google Scholar 

  68. Spanos N, Koutsoukos PG (1998) J Phys Chem B 102:6679

    Article  CAS  Google Scholar 

  69. Dickinson SR, Henderson GE, McGrath KM (2002) J Cryst Growth 244:369

    Article  CAS  Google Scholar 

  70. Hadiko G, Han YS, Fuji M, Takahashi M (2005) Mater Lett 59:2519

    Article  CAS  Google Scholar 

  71. McKauley JW, Roy R (1974) Am Miner 59:947

    Google Scholar 

  72. Heijnen WMM (1985) N Jb Miner Mh 8:357

    Google Scholar 

  73. Sawada K (1997) Pure Appl Chem 69:921

    Article  CAS  Google Scholar 

  74. Putnis A (2002) Miner Mag 66:689

    Article  CAS  Google Scholar 

  75. Hazen RM (2006) Am Miner 91:1715

    Article  CAS  Google Scholar 

  76. Nilsson Ö, Sternbeck J (1999) Geochim Cosmochim Acta 63:217

    Article  CAS  Google Scholar 

  77. Nehrke G, Reichart GJ, Van Cappellen P, Meile C, Bijma J (2007) Geochim Cosmochim Acta 71:2240

    Article  CAS  Google Scholar 

  78. Tai CY, Chang MC, Wu CK, Lin YC (2006) Chem Eng Sci 61:5346

    Article  CAS  Google Scholar 

  79. Perdikouri C, Putnis CV, Kasioptas A, Putnis A (2009) Cryst Growth Des 9:4344

    Article  CAS  Google Scholar 

  80. Paquette J, Reeder RJ (1995) Geochim Cosmochim Acta 59:735

    Article  CAS  Google Scholar 

  81. Kowacz M, Putnis A (2008) Geochim Cosmochim Acta 72:4476

    Article  CAS  Google Scholar 

  82. Cicerone DS, Regazzoni AE, Blesa MA (1992) J Coll Interface Sci 154:423

    Article  CAS  Google Scholar 

  83. Mohameed HA, Ulrich J (1996) Cryst Res Technol 31:27

    Article  CAS  Google Scholar 

  84. Hartman P, Perdock WG (1955) Acta Cryst 8:49

    Article  CAS  Google Scholar 

  85. Searl A (1991) J Sediment Petrol 61:195

    Google Scholar 

  86. Duffy DM, Harding JH (2004) Langmuir 20:7637

    Article  CAS  Google Scholar 

  87. Lahann RW (1978) J Sediment Petrol 48:337

    CAS  Google Scholar 

  88. Jung T, Kim WS, Choi CK (2004) Cryst Growth Des 4:491

    Article  CAS  Google Scholar 

  89. Gonzalez LA, Carpenter SJ, Lohmann KC (1992) J Sediment Petrol 62:382

    CAS  Google Scholar 

  90. Houst YF, Wittmann FH (1994) Cem Concr Res 24:1165

    Article  CAS  Google Scholar 

  91. Regnault O, Lagneau V, Schneider H (2009) Chem Geol 265:113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KU Leuven and Research Foundation - Flanders (FWO) are gratefully acknowledged for funding the research. CRN and ERA acknowledge funding provided by the Spanish Government under grant MAT2006-00578 and by EU Initial Training Network Delta-Min (Mechanisms of Mineral Replacement Reactions) grant PITN-GA-2008-215360. The Getty Conservation Institute (GCI), Los Angeles, USA is gratefully acknowledged for the BET analysis. This study was a part of the Lime Mortars and Plasters project, a collaborative research effort among the GCI, University of Granada and KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Cizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cizer, Ö., Rodriguez-Navarro, C., Ruiz-Agudo, E. et al. Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J Mater Sci 47, 6151–6165 (2012). https://doi.org/10.1007/s10853-012-6535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6535-7

Keywords

Navigation