Skip to main content

Advertisement

Log in

Self-assembled growth of tandem nanostructures based on TiO2 mesoporous/ZnO nanowire arrays and their optoelectronic and photoluminescence properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Growth of ZnO nanowires within TiO2 mesoporous structures is carried out by hydrothermal method. Structural, optical and thermal characterizations have been carried out by SEM, XRD, EDAX, DTG, TG, PL and UV–Vis spectroscopy. XRD characterization shows that the all diffraction peaks of the tandem nanostructures films can be well indexed to a mixture of hexagonal wurtzite ZnO and anatase TiO2 structures. The UV–Visible absorbance spectrum indicates that the tandem nanostructures based on TiO2 mesoporous/ZnO nanowire arrays have 3.13 eV band gap energy while pure ZnO nanowire and bare TiO2 mesoporous show 3.37 and 3.22 eV band gap energy, respectively. The PL spectra of tandem nanostructures show that the UV, violet and yellow emission peaks appeared at 3.1, 2.6 and 2.3 eV, respectively. It has been shown that from the PL spectra, the enhanced ultraviolet emission of TiO2/ZnO tandem structures is related to the fluorescence resonance energy transfer between TiO2 mesoporous and ZnO nanowires. Thermogravimetric analysis from room temperature to 800 °C has been performed to identify the thermal stability and the amount of tandem TiO2/ZnO structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Yunyan, M. Jin, Controllable synthesis of flower-and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 7, 075606 (2007)

    Google Scholar 

  2. C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, Enhanced photocatalytic performance of TiO2–ZnO hybrid nanostructures. Sci. Rep. 4, 4181 (2014)

    ADS  Google Scholar 

  3. C. Lao, Y. Li, C.P. Wong, Z.L. Wang, Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7(5), 1323–1328 (2007)

    ADS  Google Scholar 

  4. B. KiliC, L. Wang, O. Ozdemir, M. Lu, S. Tüzemen, One dimensional (1D) ZnO nanowires dye sensitized solar cell. J. Nanosci. Nanotechnol 13, 333–338 (2013)

    Google Scholar 

  5. Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array. Cryst. Growth Des. 9(6), 2627–2632 (2009)

    Google Scholar 

  6. M.R. Mohammadi, R.R.M. Louca, D.J. Fray, M.E. Welland, Dye-sensitized solar cells based on a single layer deposition of TiO2 from a new formulation paste and their photovoltaic performance. Sol. Energy 86(9), 2654–2664 (2012)

    ADS  Google Scholar 

  7. B. Kılıç, E. Gür, S. Tüzemen, Nanoporous ZnO photoelectrode for dye-sensitized solar cell. J. Nanomater. 7, 474656 (2012)

    Google Scholar 

  8. S.H. Lee, H.J. Lee, H. Goto, M. Cho, T. Yao, Fabrication of Porous ZnO nanostructures and morphology control. Phys Status Solidi C 4(5), 1747–1750 (2007)

    ADS  Google Scholar 

  9. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye sensitized solar cell. Adv. Mater. 21, 4087–4108 (2009)

    Google Scholar 

  10. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  ADS  Google Scholar 

  11. J. Zhou, N.S. Xu, Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18(18), 2432–2435 (2006)

    Google Scholar 

  12. G. Tang, S. Liu, H. Tang, D. Zhang, C. Li, X. Yang, Template-assisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures. Ceram Int. 39, 4969–4974 (2013)

    Google Scholar 

  13. T. Yu, X. Tan, L. Zhao, Y. Yin, P. Chen, J. Wei, Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 nanoparticles. Chem. Eng. J. 157, 86–92 (2010)

    Google Scholar 

  14. S. Kim, D. Kim, H. Choi, M.S. Kang, K. Song, S.O. Kang, J. Ko, Enhanced photovoltaic performances and long-term stability of quasi solid state dye sensitized solar cell via molecular engineering. Chem. Commun. 40, 4951–4953 (2008)

    Google Scholar 

  15. S.H. Kang, J.Y. Kim, Y.Y. Kim, H.S. Kim, Y.E. Sung, Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells. J. Phys. Chem. C 111, 9614–9623 (2007)

    Google Scholar 

  16. J.J. Qiu, F.W. Zhuge, K. Lou, X.M. Li, X.D. Gao, X.Y. Gan, W.D. Yu, H.K. Kim, Y.H. Hwang, A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells. J. Mater. Chem. 21, 5062–5068 (2011)

    Google Scholar 

  17. K.E. Kim, S.R. Jang, J. Park, R. Vittal, K.J. Kim, Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition Sol. Energy Mater. Sol. Cells 91, 366–370 (2007)

    Google Scholar 

  18. T.R. Andersen, T.T. Larsen-Olsen, B. Andreasen, A.P.L. Böttiger, J.E. Carlé, M. Helgesen, E. Bundgaard, K. Norrman, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. ACS Nano 5, 4188–4196 (2011)

    Article  Google Scholar 

  19. C-Shii Chou, F-Cheng Chou, J-Yuan Kang, Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells. Powder Technol. 215–216, 38–45 (2012)

    Google Scholar 

  20. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90(26), 263501–263503 (2007)

    ADS  Google Scholar 

  21. F. Yueping, P. Qi, W. Xiaogang, W. Jiannong, Y. Shihe, Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2(5), 612–615 (2006)

    Google Scholar 

  22. S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (2009)

    MathSciNet  Google Scholar 

  23. N. Wang, X.Y. Li, Y.X. Wang, Y. Hou, X.J. Zou, G.H. Chen, Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett. 62, 3691–3693 (2008)

    Google Scholar 

  24. A. Irannejad, K. Janghorban, O.K. Tan, H. Huang, C.K. Lim, P.Y. Tan, X. Fang, C.S. Chua, S. Maleksaeedi, S.M.H. Hejazi, M.M. Shahjamali, M. Ghaffari, Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO–TiO2 core–shell nanorod electrodes. Electrochim. Acta 58, 19–24 (2011)

    Google Scholar 

  25. Bayram Kilic, Taylan Günes, Ilknur Besirli, Merve Sezginer, Sebahattin Tuzemen, Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell. Appl. Surf. Sci. 318, 32–36 (2014)

    ADS  Google Scholar 

  26. C.W. Zou, X.D. Yan, J. Han, R.Q. Chen, J.M. Bian, E. Haemmerle, W. Gao, Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures. Chem. Phys. Lett. 476, 84–88 (2009)

    ADS  Google Scholar 

  27. L. Xu, H. Shen, X. Li, R. Zhu, Influence of annealing temperature on the photoluminescence property of ZnO thin film covered by TiO2 nanoparticles. J. Lumin. 130, 2123–2127 (2010)

    Google Scholar 

  28. D. Ma, J. Huang, Z. Ye, L. Wang, B. Zhao, Relationship between photoluminescence and structural properties of the sputtered Zn1−xCdxO films on Si substrates. Opt. Mater. 25, 367 (2004)

    ADS  Google Scholar 

  29. K. Prabakar, C. Kim, C. Lee, UV, violet and blue-green luminescence from RF sputter deposited ZnO: Al thin films. Cryst. Res. Technol. 40, 1150 (2005)

    Google Scholar 

  30. H.Y. Lin, Y.Y. Chou, C.L. Cheng, Y.F. Chen, Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites. Opt. Express 15, 13832 (2007)

    ADS  Google Scholar 

  31. A. Leelavathi, G. Madrasa, N. Ravishankar, Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 15, 10795–10802 (2013)

    Google Scholar 

  32. T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)

    ADS  Google Scholar 

  33. A. Umar, Y.B. Hahn, ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology 17, 2174 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 114F292) and the Research found of Yalova University, Project Number 2013/BAP/085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayram Kılıç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılıç, B., Çelik, V. Self-assembled growth of tandem nanostructures based on TiO2 mesoporous/ZnO nanowire arrays and their optoelectronic and photoluminescence properties. Appl. Phys. A 119, 783–790 (2015). https://doi.org/10.1007/s00339-015-9030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9030-6

Keywords

Navigation