Skip to main content
Log in

Modeling and device parameter design to improve reset time in binary-oxide memristors

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simulation-based analysis is conducted to study the set and reset times of TiO2-based memristor device. This analysis uses nonlinear device model that captures the effects of large electric field inside memristor devices. Previous studies report strong asymmetry between reset and set times with reset time being several orders of magnitude higher than set time. The aim of this work was to investigate the effect of the device length and oxygen vacancies profile on the switching time. Our results show that a device model with a length of 10 nm and accurate parameters can result in more realistic device characteristics. Also, oxygen vacancies profile can be tuned to improve the reset time. MATLAB is used to simulate a 10-nm device, and the initial vacancy profile is chosen to look like inverted parabola. The results show reduced ratio between reset and set times from several orders of magnitude presented in the literature to not more than 1.5×. Thus, the proposed oxygen vacancies profile and quantitative results derived from it can be used to suggest a physical memristor device. In addition, the tuned parameters and model that matches actual device behavior can be factored in memristor fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. S.D. Ha, S. Ramanathan, Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011)

    Article  ADS  Google Scholar 

  2. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  3. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  Google Scholar 

  4. J. Strunk, W.C. Vining, A.T. Bell, A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on mcm-48. J. Phys. Chem. C 114, 16937–16945 (2010)

    Article  Google Scholar 

  5. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  6. L. Chua, Memristor-the missing circuit element. IEEE Trans Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  7. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  8. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  9. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  ADS  Google Scholar 

  10. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)

    Article  Google Scholar 

  11. R.S. Williams, G.M. Ribeiro, D.B. Strukov, J.Yang, Controlled Switching Memristor, US Patent App. 13/383,597, 2010

  12. N.Hashem, S.Das, Switching-time analysis of binary-oxide memristors via a nonlinear model. Appl. Phys. Lett. 100, 262106 (2012)

    Article  ADS  Google Scholar 

  13. M. Noman, W. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A 102, 877–883 (2011)

    Article  Google Scholar 

  14. C. Hermes, M. Wimmer, S. Menzel, K. Fleck, G. Bruns, M. Salinga, U. Bottger, R. Bruchhaus, T. Schmitz-Kempen, M. Wuttig et al., Analysis of transient currents during ultrafast switching of nanocrossbar devices. IEEE Electron Device Lett. 32, 1116–1118 (2011)

    Article  ADS  Google Scholar 

  15. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  ADS  Google Scholar 

  16. P. Meuffels, H. Schroeder, Comment on exponential ionic drift: fast switching and low volatility of thin-film memristors by DB Strukov and RS Williams in Appl. Phys. A (2009) 94:515–519. Appl. Phys. A 105, 65–67 (2011)

    Article  Google Scholar 

  17. B. Mohammad, D. Homouz, H. Elgabra, Robust hybrid memristor-cmos memory: modeling and design. IEEE Trans. Very Large Scale Integr. Syst. 21, 2069–2079 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Abunahla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abunahla, H., Homouz, D., Halawani, Y. et al. Modeling and device parameter design to improve reset time in binary-oxide memristors. Appl. Phys. A 117, 1019–1023 (2014). https://doi.org/10.1007/s00339-014-8786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8786-4

Keywords

Navigation