Skip to main content
Log in

In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn–Bi hypoeutectic alloy under electric currents

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth behavior and morphological evolution of dendrites in solidifying Sn–Bi alloy under electric currents [e.g., direct current (DC) and electric current pulse (ECP)] are in situ studied using synchrotron radiation X-ray imaging technique. The suppression of dendrite growth, floating and rotation of dendrites, refinement and remelting of dendrites are investigated by analyzing a series of animated images captured during the experiments. The modification mechanisms of dendrite morphology by electric fields are discussed based on the in situ and real-time observations. When DC is imposed on the samples, the growth of dendrites is significantly suppressed due to the effect of Joule heat, and a small dendrite freely flows up and rotates due to the common effect of natural convection. When ECP is imposed in the whole solidification process, the outset of solidification is delayed by Joule heat. And due to the accumulation of undercooling, dendrites suddenly nucleate, grow and finally become fine primary dendrite arm spacing. When ECP is imposed during the crystal growth stage only, the dendrites are remelted at first and then reappear along the original growing trajectories, showing the hereditary feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A. Gandin, Acta Mater. 48, 2483 (2000)

    Article  Google Scholar 

  2. H.B. Dong, P.D. Lee, Acta Mater. 53, 659 (2005)

    Article  Google Scholar 

  3. J. Chang, H.P. Wang, K. Zhou, B. Wei, Appl. Phys. A 109, 139 (2012)

    Article  ADS  Google Scholar 

  4. S. Ji, J. Mater. Sci. 38, 1559 (2003)

    Article  ADS  Google Scholar 

  5. A. Bogno, H. Nguyen-Thi, N. Bergeon, N. Mangelinck-Noël, T. Schenk, B. Billia, E. Boller, J. Baruchel, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 394 (2010)

    Article  ADS  Google Scholar 

  6. A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Acta Mater. 61, 1303 (2013)

    Article  Google Scholar 

  7. A. Berkdemir, M. Gündüz, Appl. Phys. A 96, 873 (2009)

    Article  ADS  Google Scholar 

  8. B. Li, H.D. Brody, A. Kazimirov, Metall. Mater. Trans. A 38, 599 (2007)

    Article  Google Scholar 

  9. V. John, Metall. Rev. 8, 311 (1963)

    Article  Google Scholar 

  10. S. Boden, S. Eckert, G. Gerbeth, Mater. Lett. 64, 1340 (2010)

    Article  Google Scholar 

  11. V. Travnikov, K. Eckert, P.A. Nikrityuk, S. Odenbach, T. Vogt, S. Eckert, J. Cryst. Growth 339, 52 (2012)

    Article  ADS  Google Scholar 

  12. F. Li, L.L. Regel, W.R. Wilcox, J. Cryst. Growth 223, 251 (2001)

    Article  ADS  Google Scholar 

  13. M.J. Yang, D.M. Zhang, X.F. Gu, L.M. Zhang, J. Mater. Sci. 40, 5029 (2005)

    Article  ADS  Google Scholar 

  14. L. Wang, J. Shen, X. Yin, Y. Du, Y. Xiong, H. Fu, Appl. Phys. A 112, 363 (2013)

    Article  ADS  Google Scholar 

  15. H. Conrad, Mater. Sci. Eng., A 287, 205 (2000)

    Article  Google Scholar 

  16. J. Li, J. Ma, Y. Gao, Q. Zhai, Mater. Sci. Eng., A 490, 452 (2008)

    Article  Google Scholar 

  17. X. Liao, Q. Zhai, J. Luo, W. Chen, Y. Gong, Acta Mater. 55, 3103 (2007)

    Article  Google Scholar 

  18. J. Ma, J. Li, Y. Gao, Q. Zhai, Mater. Lett. 63, 142 (2009)

    Article  Google Scholar 

  19. K. Nogita, H. Yasuda, A. Prasad, S.D. McDonald, T. Nagira, N. Nakatsuka, K. Uesugi, D.H. StJohn, Mater. Charact. 85, 134 (2013)

    Article  Google Scholar 

  20. H. Yasuda, I. Ohnaka, Y. Mizutani, T. Morikawa, S. Takeshima, A. Sugiyama, Y. Waku, A. Tsuchiyama, T. Nakano, K. Uesugi, J. Eur. Ceram. Soc. 25, 1397 (2005)

    Article  Google Scholar 

  21. H. Yasuda, Y. Yamamoto, N. Nakatsuka, T. Nagira, M. Yoshiya, A. Sugiyama, I. Ohnaka, K. Umetani, K. Uesugi, Int. J. Cast. Metal. Res. 21, 125 (2008)

    Article  Google Scholar 

  22. Q. Dong, J. Zhang, J. Dong, H. Xie, Z. Li, Y. Dai, Y. Liu, B. Sun, Mater. Sci. Eng., A 530, 271 (2011)

    Article  Google Scholar 

  23. O. Shuleshova, W. Löser, D. Holland-Moritz, D.M. Herlach, J. Eckert, J. Mater. Sci. 47, 4497 (2012)

    Article  ADS  Google Scholar 

  24. B. Li, H.D. Brody, A. Kazimirov, Phys. Rev. E 70, 062602 (2004)

    Article  ADS  Google Scholar 

  25. N. Mangelinck-Noël, H. Nguyen-Thi, G. Reinhart, T. Schenk, V. Cristiglio, M.-D. Dupouy, J. Gastaldi, B. Billia, J. Härtwig, J. Baruchel, J. Phys. D Appl. Phys. 38, A28 (2005)

    Article  ADS  Google Scholar 

  26. R. Mathiesen, L. Arnberg, Acta Mater. 53, 947 (2005)

    Article  Google Scholar 

  27. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55, 4287 (2007)

    Article  Google Scholar 

  28. T. Wang, J. Xu, T. Xiao, H. Xie, J. Li, T. Li, Z. Cao, Phys. Rev. E 81, 042601 (2010)

    Article  ADS  Google Scholar 

  29. P. Cloetens, R. Barrett, J. Baruchel, J.P. Guigay, M. Schlenker, J. Phys. D Appl. Phys. 29, 133 (1996)

    Article  ADS  Google Scholar 

  30. J.R. Melcher, M.S. Firebaugh, Phys. Fluids 10, 1178 (1967)

    Article  ADS  Google Scholar 

  31. M. Chang, A. Ruo, F. Chen, S. Chang, Int. J. Heat Mass Transf. 54, 3837 (2011)

    Article  MATH  Google Scholar 

  32. J.C. Baygents, F. Baldessari, Phys. Fluids 10, 301 (1998)

    Article  ADS  Google Scholar 

  33. B. Cetin, D. Li, Electrophoresis 29, 994 (2008)

    Article  Google Scholar 

  34. J.W. Fu, Y.S. Yang, Mater. Lett. 67, 252 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of National Natural Science Foundation of China (Nos. 51274054, U1332115, 51271042, 51375070), the Keygrant Project of Chinese Ministry of Education (No. 313011). The authors wish to thank all the staff members of the BL13W1 beamline of SSRF and 4W1A beamline of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhu, J., Kang, H. et al. In situ synchrotron X-ray imaging on morphological evolution of dendrites in Sn–Bi hypoeutectic alloy under electric currents. Appl. Phys. A 117, 1059–1066 (2014). https://doi.org/10.1007/s00339-014-8537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8537-6

Keywords

Navigation