Skip to main content
Log in

Solidification and melting of high temperature materials: in situ observations by synchrotron radiation

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Until recently understanding the solidification behavior of high temperature materials, including many intermetallic systems, required evaluation of a great number of individual solidification experimental results. An additional challenge was the reactivity of metallic melts at elevated temperatures. Alternative methods for in situ observation of solidification processes using the high-energy synchrotron X-ray diffraction, which came up in the last decade, are reviewed in the present work. Here, solidifying phases and transformation sequences are directly related to their X-ray diffraction pattern, which avoids any confusion caused by subsequent phase transformations especially in complex systems. By containerless processing with aerodynamic, electrostatic and electromagnetic levitation methods, adapted to the application at the synchrotron beamline, contamination of the melt with impurities is avoided, which can corrupt the results of solidification studies by conventional methods. To date, the majority of the studies is focused on metastable phase formation and the structure of undercooled melts. Current efforts on liquid–solid phase transformations under conditions close to the equilibrium, which provide a great potential for acquisition of phase diagram data of refractory and reactive alloys, are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dantzig J, Rappaz M (2009) Solidification. EPFL Press, Lausanne

    Book  Google Scholar 

  2. Gödecke T (2001) Z Metallkd 92:966

    Google Scholar 

  3. Boettinger WJ, Kattner UR, Moon KW, Perepezko JH (2006) DTA and heat-flux DSC measurements of alloy melting and freezing. NIST Special Publication, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  4. Timmermans G, Froyen L, Van Humbeeck J (2000) J Mater Sci 35:3289. doi:10.1023/A:1004831623843

    Article  CAS  Google Scholar 

  5. Hampl M, Gröbner J, Schmid-Fetzer R (2007) J Mater Sci 42:10023. doi:10.1007/s10853-007-2002-2

    Article  CAS  Google Scholar 

  6. Chapman LA (2004) J Mater Sci 39:7229. doi:10.1023/B:JMSC.0000048736.86794.12

    Article  CAS  Google Scholar 

  7. Shi PF, Engström A, Höglund L, Chen Q, Sundman B, Ågren J, Hillert M (2007) J Iron Steel Res Int 14:210

    Article  Google Scholar 

  8. Chen H, Du Y, Xu H, Liu Y (2005) J Mater Sci 40:6019. doi:10.1007/s10853-005-4553-4

    Article  CAS  Google Scholar 

  9. Löser W, Garcia-Escorial A, Vinet B (1998) Int J Non-Equilib Process 11:89

    Google Scholar 

  10. Banerjee S, Dey GK (2004) J Mater Sci 39:3985. doi:10.1023/B:JMSC.0000031480.14624.a4

    Article  CAS  Google Scholar 

  11. Liss KD, Bartels A, Schreyer A, Clemens H (2003) Texture Microstruct 35:219

    Article  Google Scholar 

  12. Liss KD, Bartels A, Clemens H, Bystrzanowski S, Stark A, Buslaps T, Schimansky FP, Gerling R, Scheu C, Schreyer A (2006) Acta Mater 54:3721

    Article  CAS  Google Scholar 

  13. Liss KD, Bartels A, Clemens H, Stark A, Buslaps T, Phelan D, Yeoh LA (2008) In: Kim Y, Morris D, Yang R, Leyens C (eds) Structural aluminides for elevated temperatures: gamma titanium and other metallic aluminides, Minerals, Metals & Materials Society, Warrendale, PA, p 137

  14. Froes FH, Suryanarayana C, Elizer D (1992) J Mater Sci 27:5113. doi:10.1007/BF02403806

    Article  CAS  Google Scholar 

  15. Notthoff C, Franz H, Hanfland M, Herlach D, Holland-Moritz D, Petry W (2000) Rev Sci Instrum 71:3791

    Article  CAS  Google Scholar 

  16. Holland-Moritz D, Schenk T, Convert P, Hansen T, Herlach D (2005) Meas Sci Technol 16:372

    Article  CAS  Google Scholar 

  17. Gangopadhyay A, Lee G, Kelton K, Rogers J, Goldman A, Robinson D, Rathz T, Hyers R (2005) Rev Sci Instrum 76:073901

    Article  CAS  Google Scholar 

  18. Kordel T, Holland-Moritz D, Yang F, Peters J, Unruh T, Hansen T, Meyer A (2011) Phys Rev B 83:104205

    Article  CAS  Google Scholar 

  19. Krishnan S, Felten J, Rix J, Weber J, Nordine P, Beno M, Ansell S, Price D (1997) Rev Sci Instrum 68:3512

    Article  CAS  Google Scholar 

  20. Price DL (2010) High-temperature levitated materials. ambridge University Press, Cambridge

    Book  Google Scholar 

  21. Kestler H, Clemens H (2003) Titanium and titanium alloys. Wiley-VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  22. Wu X, Hu D, Loretto MH (2004) J Mater Sci 39:3935. doi:10.1023/B:JMSC.0000031474.29156.17

    Article  CAS  Google Scholar 

  23. Murray J (1987) Phase diagrams of binary titanium alloys. ASM International, Metal Park, OH

    Google Scholar 

  24. Schuster JC, Palm M (2006) J Phase Equilib Diff 27:255

    Article  CAS  Google Scholar 

  25. Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TY (2008) J Alloys Compd 465:64

    Article  CAS  Google Scholar 

  26. Witusiewicz VT, Bondar AA, Hecht U, Velikanova TY (2009) J Alloys Compd 472:133

    Article  CAS  Google Scholar 

  27. Johnson D, Inui H, Muto S, Omiya Y, Yamanaka T (2006) Acta Mater 54:1077

    Article  CAS  Google Scholar 

  28. Zdziobek A, Durand-Charre M, Driole J, Durand F (1995) Z Metallkd 86:334

    CAS  Google Scholar 

  29. Malinov S, Novoselova T, Sha W (2004) Mater Sci Eng A 386:344

    Google Scholar 

  30. Novoselova T, Malinov S, Sha W, Zhecheva A (2004) Mater Sci Eng A 371:103

    Article  CAS  Google Scholar 

  31. Yeoh LA, Liss KD, Bartels A, Chladil H, Avdeev M, Clemens H, Gerling R, Buslaps T (2007) Scripta Mater 57:1145

    Article  CAS  Google Scholar 

  32. Lapin J, Gabalcová Z, Pelachová T (2011) Intermetallics 19:396

    Google Scholar 

  33. Lavernia EJ, Srivatsan T (2010) J Mater Sci 45:287. doi:10.1007/s10853-009-3995-5

    Article  CAS  Google Scholar 

  34. Herlach DM, Cochrane RF, Egry I, Fecht HJ, Greer AL (1993) Int Mater Rev 38:273

    Article  CAS  Google Scholar 

  35. Herlach DM, Galenko PK, Holland-Moritz D (2007) Metastable solids from undercooled melts. Pergamon, Oxford

    Google Scholar 

  36. Krishnan S, Nordine PC (1996) J Appl Phys 80:1735

    Article  CAS  Google Scholar 

  37. Anderson CD, Hofmeister WH, Bayuzick RJ (1992) Metall Trans A 23:2699

    Article  Google Scholar 

  38. Valencia JJ, McCullough C, Levi CG, Mehrabian R (1989) Acta Metall Mater 37:2517

    Article  CAS  Google Scholar 

  39. Jacobs G, Egry I, Maier K, Platzek D, Reske J, Frahm R (1996) Rev Sci Instrum 67:3683

    Article  CAS  Google Scholar 

  40. Frank FC (1952) Proc R Soc Lond A 215:43

    Article  CAS  Google Scholar 

  41. Notthoff C, Franz H, Hanfland M, Herlach D, Holland-Moritz D, Jacobs G, Lippok R, Petry W, Platzek D (1999) J Non-Cryst Solids 250:632

    Article  Google Scholar 

  42. Schenk T, Holland-Moritz D, Simonet V, Bellissent R, Herlach D (2002) Phys Rev Lett 89:075507

    Article  CAS  Google Scholar 

  43. Greaves GN, Wilding MC, Fearn S, Kargl F, Hennet L, Bras W, Majerus O, Martin CM (2009) J Non-Cryst Solids 355:715

    Article  CAS  Google Scholar 

  44. Hennet L, Thiaudiere D, Landron C, Berar J, Saboungi M, Matzen G, Price D (2003) Nucl Instrum Methods B 207:447

    Article  CAS  Google Scholar 

  45. Landron C, Hennet L, Coutures J, Gailhanou M, Gramond M, Berar J (1998) Europhys Lett 44:429

    Article  CAS  Google Scholar 

  46. Landron C, Hennet L, Coutures J, Jenkins T, Aletru C, Greaves N, Soper A, Derbyshire G (2000) Rev Sci Instrum 71:1745

    Article  CAS  Google Scholar 

  47. Hennet L, Pozdnyakova I, Bytchkov A, Cristiglio V, Palleau P, Fischer H, Cuello G, Johnson M, Melin P, Zanghi D, Brassamin S, Brun J, Price D, Saboungi M (2006) Rev Sci Instrum 77:053903

    Article  CAS  Google Scholar 

  48. Hennet L, Cristiglio V, Kozaily J, Pozdnyakova I, Fischer HE, Bytchkov A, Drewitt JWE, Leydier M, Thiaudiere D, Gruner S, Brassamin S, Zanghi D, Cuello GJ, Koza M, Magazu S, Greaves GN, Price DL (2011) Eur Phys J Spec Top 196:151

    Article  Google Scholar 

  49. Kelton K, Gangopadhyay A, Lee G, Hannet L, Hyers R, Krishnan S, Robinson M, Rogers J, Rathz T (2002) J Non-Cryst Solids 312:305

    Article  Google Scholar 

  50. Mauro NA, Kelton KF (2011) Rev Sci Instrum 82:035114

    Article  CAS  Google Scholar 

  51. Hennet L, Krishnan S, Bytchkov A, Key T, Thiaudiere D, Melin P, Pozdnyakova I, Saboungi M, Price D (2005) Int J Thermophys 26:1127

    Article  CAS  Google Scholar 

  52. Nagashio K, Kuribayashi K, Kumar MSV, Niwata K, Hibiya T, Mizuno A, Watanabe M, Katayama Y (2006) Appl Phys Lett 89:241923

    Article  CAS  Google Scholar 

  53. Simonet V, Hippert F, Klein H, Audier M, Bellissent R, Fischer H, Murani A, Boursier D (1998) Phys Rev B 58:6273

    Article  CAS  Google Scholar 

  54. Simonet V, Hippert F, Audier M, Bellissent R (2001) Phys Rev B 65:024203

    Article  CAS  Google Scholar 

  55. Holland-Moritz D, Schenk T, Bellissent R, Simonet V, Funakoshi K, Merino J, Buslaps T, Reutzel S (2002) J Non-Cryst Solids 312:47

    Article  Google Scholar 

  56. Holland-Moritz D, Heinen O, Bellissent R, Schenk T, Herlach DM (2006) Int J Mater Res 97:948

    CAS  Google Scholar 

  57. Holland-Moritz D, Heinen O, Bellissent R, Schenk T (2007) Mater Sci Eng 449:42

    Article  CAS  Google Scholar 

  58. Holland-Moritz D, Stueber S, Hartmann H, Unruh T, Hansen T, Meyer A (2009) Phys Rev B 79:064204

    Article  CAS  Google Scholar 

  59. Kelton K, Lee G, Gangopadhyay A, Hyers R, Rathz T, Rogers J, Robinson M, Robinson D (2003) Phys Rev Lett 90:195504

    Article  CAS  Google Scholar 

  60. Lee G, Gangopadhyay A, Kelton K, Hyers R, Rathz T, Rogers J, Robinson D (2004) Phys Rev Lett 93:037802

    Article  CAS  Google Scholar 

  61. Lee G, Gangopadhyay A, Croat T, Rathz T, Hyers R, Rogers J, Kelton K (2005) Phys Rev B 72:174107

    Article  CAS  Google Scholar 

  62. Mauro NA, Wessels V, Bendert JC, Klein S, Gangopadhyay AK, Kramer MJ, Hao SG, Rustan GE, Kreyssig A, Goldman AI, Kelton KF (2011) Phys Rev B 83:184109

    Article  CAS  Google Scholar 

  63. Nelson D, Spaepen F (1989) Polytetrahedral order in condensed matter. vol 42, Academic Press, New York

    Google Scholar 

  64. Bhatia A, Thornton D (1970) Phys Rev B 3:3004

    Article  Google Scholar 

  65. Schenk T, Simonet V, Holland-Moritz D, Bellissent R, Hansen T, Convert P, Herlach D (2004) Europhys Lett 65:34

    Article  CAS  Google Scholar 

  66. Smithells CJ, Brandes E (1983) Smithells metals reference book. Butterworth, London

    Google Scholar 

  67. Ronchetti M, Cozzini S (1994) Mater Sci Eng A 178:19

    Article  CAS  Google Scholar 

  68. Voigtmann T, Meyer A, Holland-Moritz D, Stueber S, Hansen T, Unruh T (2008) Europhys Lett 82:66001

    Article  CAS  Google Scholar 

  69. Waseda Y (1980) The structure of non-crystalline materials. McGraw-Hill, New York

  70. Huang L, Wang C, Ho K (2011) Phys Rev B 83:184103

    Article  CAS  Google Scholar 

  71. Sheng H, Luo W, Alamgir F, Bai J, Ma E (2006) Nature 439:419

    Article  CAS  Google Scholar 

  72. Turnbull D (1950) J Appl Phys 21:1022

    Article  CAS  Google Scholar 

  73. Palumbo M, Papandrea C, Battezzati L (2005) J Mater Sci 40:2431

    Article  CAS  Google Scholar 

  74. Spaepen F (1975) Acta Metall Mater 23:729

    Article  CAS  Google Scholar 

  75. Spaepen F, Meyer RB (1976) Scripta Metall Mater 10:257

    Google Scholar 

  76. Thompson CV (1979) PhD thesis, Harvard University, USA

  77. Holland-Moritz D (1998) Int J Non-Equilib Process 11:169

    CAS  Google Scholar 

  78. Li D, Herlach DM (1997) J Mater Sci 32:1437. doi:10.1023/A:1018593615171

    Article  CAS  Google Scholar 

  79. Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64

    Google Scholar 

  80. Notthoff C, Feuerbacher B, Franz H, Herlach D, Holland-Moritz D (2001) Phys Rev Lett 86:1038

    Article  CAS  Google Scholar 

  81. Schroers J, Volkmann T, Herlach D, Allen D, Perepezko J (1996) Int J Rapid Solidif 9:267

    CAS  Google Scholar 

  82. Volkmann T, Strohmenger J, Gao J, Herlach D (2004) Appl Phys Lett 85:2232

    Article  CAS  Google Scholar 

  83. Strohmenger J, Volkmann T, Gao J, Herlach D (2005) Mater Sci Eng A 413:263

    Article  CAS  Google Scholar 

  84. Volkmann T, Gao J, Herlach D (2002) Appl Phys Lett 80:1915

    Article  CAS  Google Scholar 

  85. Schneider G, Henig ET, Petzow G, Stadelmaier HH (1986) Z Metallkd 77:755

    CAS  Google Scholar 

  86. Strohmenger J, Volkmann T, Gao J, Herlach D (2006) Mater Sci Forum IV 508:81

    Article  CAS  Google Scholar 

  87. Ngan A, Jones I, Smallman R (1992) Mater Sci Eng A 153:387

    Article  Google Scholar 

  88. Mryasov ON, Gornostyrev YN, van Schlifgaarde M, Freeman AJ (2002) Acta Mater 50:4545

    Article  CAS  Google Scholar 

  89. Biswas K, Phanikumar G, Chattopadhyay K, Volkmann T, Funke O, Holland-Moritz D, Herlach D (2004) Mater Sci Eng A 375:464

    Article  CAS  Google Scholar 

  90. Phanikumar G, Biswas K, Funke O, Holland-Moritz D, Herlach DM, Chattopadhyay K (2005) Acta Mater 53:3591

    Article  CAS  Google Scholar 

  91. Raney M (1925) US Patent 1-563-587, 01 Dec 1925

  92. Li X, Kuo K (1988) Philos Mag Lett 58:167

    Article  CAS  Google Scholar 

  93. Shuleshova O, Holland-Moritz D, Löser W, Reinhart G, Iles GN, Büchner B (2009) Europhys Lett 86:36002

    Article  CAS  Google Scholar 

  94. Pohla C, Ryder PL (1997) Acta Mater 45:2155

    Article  CAS  Google Scholar 

  95. Hartmann H (2008) PhD thesis, Ruhr-Universität Bochum

  96. Hartmann H, Holland-Moritz D, Galenko PK, Herlach DM (2009) Europhys Lett 87:40007

    Article  CAS  Google Scholar 

  97. Li M, Nagashio K, Ishikawa T, Mizuno A, Adachi M, Watanabe M, Yoda S, Kuribayashi K, Katayama Y (2008) Acta Mater 56:2514

    Article  CAS  Google Scholar 

  98. Holland-Moritz D, Schroers J, Grushko B, Herlach DM, Urban K (1997) Mater Sci Eng A 226(228):976

    Google Scholar 

  99. Holland-Moritz D, Heinen O, Herlach D (2005) Mater Sci Eng 413:403

    Article  CAS  Google Scholar 

  100. Heinen O, Holland-Moritz D, Herlach D, Kelton K (2006) J Cryst Growth 286:146

    Article  CAS  Google Scholar 

  101. Heinen O, Holland-Moritz D, Herlach DM (2007) Mater Sci Eng A 449:662

    Article  CAS  Google Scholar 

  102. Landron C, Hennet L, Berthet P, Coutures J, Berar J (1999) Jpn J Appl Phys 38:87

    Article  CAS  Google Scholar 

  103. Landron C, Hennet L, Thiaudiere D, Price D, Greaves G (2003) Nucl Instrum Methods B 199:481

    Article  CAS  Google Scholar 

  104. Hennet L, Landron C, Berthet P, Coutures J, Jenkins T, Aletru C, Greaves N (1999) Jpn J Appl Phys 38:115

    Article  CAS  Google Scholar 

  105. Kuribayashi K, Nagashio K, Niwata K, Kumar MSV, Hibiya T (2008) Rev Adv Mater Sci 18:444

    CAS  Google Scholar 

  106. Donnay, J, Ondik, H (eds) (1973) Crystal data, vol 2. US Department of Commerce and NBS, Washington, DC

    Google Scholar 

  107. Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32:1005

    CAS  Google Scholar 

  108. Inoue A, Kawase D, Tsai AP, Zhang T, Masumoto T (1994) Mater Sci Eng A 178:255

    Article  CAS  Google Scholar 

  109. Watanabe M, Mizuno A, Akimoto T, Kohara S (2010) Mater Sci Forum 638–642:1677

    Article  CAS  Google Scholar 

  110. Kelton K, Gangopadhyay A (2005) Powder Diffr 20:87

    Article  CAS  Google Scholar 

  111. Shuleshova O, Holland-Moritz D, Löser W, Voss A, Hartmann H, Hecht U, Witusiewicz VT, Herlach DM, Büchner B (2010) Acta Mater 58:2408

    Article  CAS  Google Scholar 

  112. Shuleshova O, Holland-Moritz D, Voss A, Löser W (2011) Intermetallics 19:688

    Article  CAS  Google Scholar 

  113. Shuleshova O, Woodcock TG, Lindenkreuz HG, Hermann R, Loeser W, Buechner B (2007) Acta Mater 55:681

    Article  CAS  Google Scholar 

  114. Witusiewicz VT, Bondar AA, Hecht U, Voblikov VM, Fomichov OS, Petyukh VM, Rex S (2011) Intermetallics 19:234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Shuleshova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuleshova, O., Löser, W., Holland-Moritz, D. et al. Solidification and melting of high temperature materials: in situ observations by synchrotron radiation. J Mater Sci 47, 4497–4513 (2012). https://doi.org/10.1007/s10853-011-6184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6184-2

Keywords

Navigation