Skip to main content
Log in

Investigation on electronic transitions in Co-doped ZnO by surface photovoltage spectra

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface photovoltage spectrum (SPS) technique is one of the powerful experimental methods for studying the attribution of electronic transition. The SPS investigation on Zn0.97Co0.03O system has been reported here. The different transitions in the material are distinguished by the electric field-induced surface photovoltage spectra (EFISPS), in which SPS is combined with the electric field-modified technique. The presence of the interaction between defects (excitonic transition) and Co2+ (charge-transfer transition) is confirmed by EFISPS. The magnetic properties are measured as a function of magnetic field and temperature. No hysteresis is observed, but Curie–Weiss temperature for Co-doped ZnO is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  2. K. Ando, H. Saito, Z.W. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, Appl. Phys. Lett. 89, 7284 (2001)

    Google Scholar 

  3. X. Cao, J. Meng, F. Mi, Z. Zhang, S. Jie, Solid State Commun. 151, 678 (2011)

    Article  ADS  Google Scholar 

  4. R. Podila, B. Anand, J.P. West, R. Philip, S. Siva Sankara Sai, J. He, M. Skove, S.-J. Hwu, S. Tewari, A.M. Rao, Nanotechnology 22, 095703 (2011)

    Article  ADS  Google Scholar 

  5. K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  6. O. Toulemonde, M. Gaudon, J. Phys. D Appl. Phys. 43, 045001 (2010)

    Article  ADS  Google Scholar 

  7. B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)

    Article  ADS  Google Scholar 

  8. R. Singhala, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, J. Alloys Compd. 495, 324 (2010)

    Article  Google Scholar 

  9. A. Ney, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, T.C. Kaspar, S.A. Chambers, F. Wilhelm, A. Rogalev, Phys. Rev. B 82, 041202 (2010)

    Article  ADS  Google Scholar 

  10. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)

    Article  ADS  Google Scholar 

  11. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T.C. Kaspar, S.A. Chambers, F. Wilhelm, A. Rogalev, Phys. Rev. Lett. 100, 157201 (2008)

    Article  ADS  Google Scholar 

  12. N. Jedrecy, H.J. von Bardeleben, D. Demaille, Phys. Rev. B 80, 205204 (2009)

    Article  ADS  Google Scholar 

  13. T. Shi, Z. Xiao, Z. Yin, X. Li, Y. Wang, H. He, J. Wang, W. Yan, S. Wei, Appl. Phys. Lett. 96, 211905 (2010)

    Article  ADS  Google Scholar 

  14. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  15. Z.L. Lu, H.S. Hsu, Y.H. Tzeng, F.M. Zhang, Y.W. Du, J.C.A. Huang, J. Appl. Phys. 95, 102501 (2009)

    Google Scholar 

  16. K. Ando, Science 312, 1883 (2006)

    Article  Google Scholar 

  17. S.C. Wi et al., Appl. Phys. Lett. 84, 4233 (2004)

    Article  ADS  Google Scholar 

  18. M. Kobayashi et al., Phys. Rev. B 72, 201201 (2005)

    Article  ADS  Google Scholar 

  19. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  ADS  Google Scholar 

  20. K.R. Kittilstved, D.R. Gamelin, J. Am. Chem. Soc. 127, 5292 (2005)

    Article  Google Scholar 

  21. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)

    Article  ADS  Google Scholar 

  22. Y.H. Lin, D.J. Wang, Q.D. Zhao, M. Yang, Q.L. Zhang, J. Phys. Chem. B 108, 3202 (2004)

    Article  Google Scholar 

  23. B.F. Xin, L.Q. Jing, Z.Y. Ren, B.Q. Wang, H.G. Fu, J. Phys. Chem. B 109, 2805 (2005)

    Article  Google Scholar 

  24. T. He, Y. Ma, Y.A. Cao, X.L. Hu, H.M. Liu, G.G. Zhang, W.S. Yang, J.N. Yao, J. Phys. Chem. B 106, 12670 (2002)

    Article  Google Scholar 

  25. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoçd, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  26. K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420 (2002)

    Article  ADS  Google Scholar 

  27. J.J. Wu, S.C. Liu, M.H. Yang, Appl. Phys. Lett. 85, 1027 (2004)

    Article  ADS  Google Scholar 

  28. C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, F. Pan, Y.N. Xie, T. Liu, H.T. Zhou, Z. Fan, Phys. Rev. B 73, 024405 (2006)

    Article  ADS  Google Scholar 

  29. Y.B. Zhang, T. Sritharan, S. Li, Phys. Rev. B 73, 172404 (2006)

    Article  ADS  Google Scholar 

  30. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 92, 6066 (2002)

    Article  ADS  Google Scholar 

  31. P. Koidl, Phys. Rev. B 15, 2493 (1977)

    Article  ADS  Google Scholar 

  32. E. Griebl, A. Kronschnabl, M. Krenzer, P. Müller, W. Gebhardt, Phys. Status Solidi (b) 211, 117 (1999)

    Article  ADS  Google Scholar 

  33. D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003)

    Article  Google Scholar 

  34. K. Samanta, P. Bhattacharya, R.S. Katiyar, Appl. Phys. Lett. 87, 101903 (2005)

    Article  ADS  Google Scholar 

  35. T.F. Jaramillo, S.H. Baeck, A.K. Shwarsctein, K.S. Choi, G.D. Stucky, E.W. McFarl, J. Comb. Chem. 7, 264 (2005)

    Article  Google Scholar 

  36. Y.R. Lee, A.K. Ramdas, R.L. Aggarwal, Phys. Rev. B 38, 10600 (1988)

    Article  ADS  Google Scholar 

  37. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207 (1986)

    Article  ADS  Google Scholar 

  38. E.J. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, Phys. Rev. B 62, 1660 (2000)

    Article  ADS  Google Scholar 

  39. Y.H. Lin, D.J. Wang, Q.D. Zhao, Z.H. Li, Y.D. Ma, M. Yang, Nanotechnology 17, 2110 (2006)

    Article  ADS  Google Scholar 

  40. S.X. Guo, Z.L. Du, J. Magn. Magn. Mater. 324, 782 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation of the education department of Henan province (No. 2011C14003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxia Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Guo, H. & Du, Z. Investigation on electronic transitions in Co-doped ZnO by surface photovoltage spectra. Appl. Phys. A 117, 1295–1300 (2014). https://doi.org/10.1007/s00339-014-8535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8535-8

Keywords

Navigation