Skip to main content
Log in

Structural, band gap and photoluminescence behaviour of Mn-doped ZnS quantum dots annealed under Ar atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Mn doped ZnS quantum dots with Mn = 2, 4 and 6 % have been prepared through a simple chemical method, namely the chemical precipitation method and annealed under Ar atmosphere. The prepared samples have been analyzed using X-ray diffraction (XRD), scanning electron microscope, energy dispersive X-ray (EDX) spectra, transmission electron microscope and X-ray photoelectron spectroscopy (XPS), UV–visible spectrometer, Fourier transform infra red (FTIR) spectra and photoluminescence (PL) measurements. XRD pattern confirmed that all the samples had cubic structure and the average crystallite size varied in the range of 1–3 nm. The substitution of Mn into Zn–S matrix was supported by the variation in lattice parameters. The elemental composition of the samples with their nominal stoichiometry was verified by EDX analysis. XPS revealed the presence and incorporation of Mn2+ into ZnS lattice sites and the formation of a Mn2+–Zn2+–S combined structure. The higher transmittance observed at Mn = 2 % doped ZnS is useful for the opto-electronic device applications. The continues red shift of energy gap by Mn-doping is due to the direct energy transfer between semiconductor-excited states and the 3d levels of Mn2+ ions. The detected absorption bands around 672 cm−1 and 480–496 from FTIR spectra proved the presence of Mn–S specific vibrations. PL spectra showed the two strong and broad bands, UV band around 390 nm and blue emission band between 455 and 483 nm and a weak green emission around 543 nm. The suppression of blue emission by Mn-doping and the reduction of green emission were discussed based on surface defect sites and vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.Z. Liu, P.X. Yan, G.H. Yue, J.B. Chang, D.M. Qu, R.F. Zhuo, J. Phys. D Appl. Phys. 39, 2352 (2006)

    Article  Google Scholar 

  2. H. Cho, C. Yun, J.-W. Park, S. Yoo, Org. Electron. 10, 1163 (2009)

    Article  Google Scholar 

  3. X. Liu, X. Cai, J. Mao, C. Jin, Appl. Surf. Sci. 183, 103 (2001)

    Article  Google Scholar 

  4. V. Dimitrova, J. Tate, Thin Solid Films 365, 134 (2000)

    Article  Google Scholar 

  5. A. Vecht, N.J. Werring, R. Ellis, P.J.F. Smith, J. Phys. D Appl. Phys. 2, 953 (1969)

    Article  Google Scholar 

  6. J.D. Davidson, J.F. Wager, S. Kobayashi, J. Appl. Phys. 71, 4040 (1992)

    Article  Google Scholar 

  7. Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang, Vacuum 85, 744 (2011)

    Article  Google Scholar 

  8. O.A. Korotchenkov, A. Cantarero, A.P. Shpak, Y.A. Kunitskii, A.I. Senkevich, M.O. Borovoy, A.B. Nadtochii, Nanotechnology 16, 2033 (2005)

    Article  Google Scholar 

  9. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  10. S.W. Lu, B.I. Lee, Z.L. Wang, W. Tong, B.K. Wagner, W. Park, C.J. Summers, J. Lumin. 92, 73 (2001)

    Article  Google Scholar 

  11. A. Le Donne, S.K. Jana, S. Banerjee, S. Basu, S. Binetti, J. Appl. Phys. 113, 014903 (2013)

    Article  Google Scholar 

  12. P. Wu, J. Zhang, S. Wang, A. Zhu, X. Hou, Chem. Eur. J. 20, 952 (2014)

    Article  Google Scholar 

  13. S. Biswas, S. Kar, Nanotechnology 19, 045710 (2008)

    Article  Google Scholar 

  14. H.J. Yuan, X.Q. Yan, Z.X. Zhang, D.F. Liu, Z.P. Zhou, L. Cao, J.X. Wang, Y. Gao, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, S.S. Xie, J. Cryst. Growth 271, 403 (2004)

    Article  Google Scholar 

  15. Q. Xiao, C. Xiao, Appl. Surf. Sci. 254, 6432 (2008)

    Article  Google Scholar 

  16. C.M. Huang, L.C. Chen, G.T. Pan, T.C.K. Yang, W.S. Chang, K.W. Cheng, Mater. Chem. Phys. 117, 156 (2009)

    Article  Google Scholar 

  17. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. 25, 925 (1969)

    Article  Google Scholar 

  18. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14, 299 (2012)

    Article  Google Scholar 

  19. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.A. Cho, J. Morkoc, J. Appl. Phys. 98–103, 041301 (2005)

    Article  Google Scholar 

  20. S. Arora, S. Manoharan, Mater. Chem. Phys. 110, 34 (2008)

    Article  Google Scholar 

  21. S.W. Shin, S.R. Kang, J.H. Yun, A.V. Moholkar, J.H. Moon, J.Y. Lee, J.H. Kim, Sol. Energy Mater. Sol. Cells 95, 856 (2011)

    Article  Google Scholar 

  22. B. Asenjo, A.M. Chaparro, M.T. Gutirez, J. Herrero, J. Klaer, Sol. Energy Mater. Sol. Cells 92, 302 (2008)

    Article  Google Scholar 

  23. P. Yang, M. Lu, G. Zhou, D.R. Yuan, D. Xu, Inorg. Chem. Comm. 4, 734 (2001)

    Article  Google Scholar 

  24. J. Chen, Y. Li, Y. Wang, J. Yum, D. Cao, Mater. Res. Bull. 39, 185 (2004)

    Article  Google Scholar 

  25. F.J. Brieler, M. Froba, L. Chen, P.J. Klar, W. Heimbrodt, H.A. Krug Von Nidda, A. Loidl, Chem. Eur. J. 81, 185 (2002)

    Article  Google Scholar 

  26. S. Sapra, N. Shanthi, D.D. Sarma, Phys. Rev. B 66, 205202 (2002)

    Article  Google Scholar 

  27. S. Anandan, S. Muthukumaran, M. Ashokkumar, Superlattices Microstruct. 74, 247 (2014)

    Article  Google Scholar 

  28. K. Sooklal, B.S. Cullumn, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100, 4551 (1996)

    Article  Google Scholar 

  29. S. Nazerdeylami, E. Saievar-Iranizad, Z. Dehghani, M. Molaei, Phys. B 406, 108 (2011)

    Article  Google Scholar 

  30. R. Kriptal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta A 76, 523 (2010)

    Article  Google Scholar 

  31. R.M. Krsmanović Whiffen, D.J. Jovanović, Ž. Antić, B. Bártová, D. Milivojević, M.D. Dramićanin, M.G. Brik, J. Lumin. 146, 133 (2014)

    Article  Google Scholar 

  32. I. Devadoss, S. Muthukumaran, M. Ashokkumar, J. Mater. Sci.: Mater. Electron. 25, 3308 (2014)

    Google Scholar 

  33. B. Yuri, E.H. Susan, K. Matthias, P.D. Yang, F. Heinz, A.S. Gabor, J. Phys. Chem. B 110, 23052 (2006)

    Article  Google Scholar 

  34. G. Murugadoss, J. Lumin. 130, 2207 (2010)

    Article  Google Scholar 

  35. N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, S. Mahamuni, J. Appl. Phys. 88, 6260 (2000)

    Article  Google Scholar 

  36. J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, D.Y. Li, Adv. Funct. Mater. 15, 303 (2005)

    Article  Google Scholar 

  37. G. Zhu Motlan, K.D. Tomsia, K. McBean, M.R. Phillips, E.M. Goldys, Opt. Mater. 29, 1579 (2007)

    Article  Google Scholar 

  38. P. Roy, J.R. Ota, S.K. Srivastava, Thin Solid Films 515, 1912 (2006)

    Article  Google Scholar 

  39. S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, J. Phys. Chem. B 109, 1663 (2005)

    Article  Google Scholar 

  40. A.A. Bol, A. Meijerink, J. Phys. Chem. B 105, 10197 (2001)

    Article  Google Scholar 

  41. J.F. Suyver, J.J. Kelly, A. Meijerink, J. Lumin. 104, 187 (2003)

    Article  Google Scholar 

  42. J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Nano Lett. 1, 429 (2001)

    Article  Google Scholar 

  43. S. Bhattacharyya, D. Zitoun, A. Gedanken, Nanosci. Nanotechnol. Lett. 3, 541 (2011)

    Article  Google Scholar 

  44. B. Dong, L. Cao, G. Su, W. Liu, J. Colloid Interface Sci. 367, 178 (2012)

    Article  Google Scholar 

  45. Q. Pan, D. Yang, Y. Zhao, Z. Ma, G. Dong, J. Qiu, J. Alloys Compd. 579, 300 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, P., Muthukumaran, S. & Ashokkumar, M. Structural, band gap and photoluminescence behaviour of Mn-doped ZnS quantum dots annealed under Ar atmosphere. J Mater Sci: Mater Electron 26, 1533–1542 (2015). https://doi.org/10.1007/s10854-014-2572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2572-0

Keywords

Navigation