Skip to main content
Log in

Ferromagnetic, Optical and Photoluminescence Behavior of Ni-Doped ZnO Thin Films

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ni-doped ZnO (NZO) thin films were prepared onto a glass substrate with varying concentrations of 2, 4, 6, 8, 10% of Ni using sol-gel spin coating method and their structural, optical and magnetic characteristics were discussed with supporting of XRD, UV, Photoluminescence, XPS and vibrating sample magnetometer (VSM) characterization techniques. The XRD analysis shows that the polycrystalline hexagonal wurtzite structure with (002) orientation of NZO thin films. The XPS results confirmed the presence of Ni ion in all the samples. The optical bandgap of the prepared samples was decreased with increasing concentrations of nickel from 3.33 to 3.22 eV. Photoluminescence spectra showed a red shift of near band edge (NBE) and deep level (DLE) emissions for prepared undoped and NZO thin films. The VSM of prepared NZO thin films exhibit ferromagnetic behavior at room temperature for potential applications in various fields. Our experimental observations support for transparent conducting electrode and spintronics device applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ariyakkani P, Suganya L, Sundaresan B (2017) J Alloy Comp 695:3467–3475. https://doi.org/10.1016/j.jallcom.2016.12.011

    Article  CAS  Google Scholar 

  2. Suganya L, Sundaresan B, Sankareswari G, Ravichandran K, Sakthivel B (2014) J Matter Sci Mater Electron 25:361–368. https://doi.org/10.1007/s10854-013-1595-2

    Article  CAS  Google Scholar 

  3. Nilavazhagan AD, Santhanam S, Chidhambaram A, Kunavathy N, Tansir Ahamed KV, Alsheri SM (2021) Phys E 129:114665. https://doi.org/10.1016/j.physe.2021.114665

    Article  CAS  Google Scholar 

  4. Kanagamani K, Muthukrishnan P, Kathiresan A, Shankar K, Sakthivel P, Ilayaraja M (2021) Acta Metall Sin (Engl Lett) 34:729–740. https://doi.org/10.1007/s40195-020-01116-x

    Article  CAS  Google Scholar 

  5. Shanmugapriya V, Arunpandiyan S, Hariharan G, Bharathi S, Selvakumar B, Arivarasan A (2023) J Alloys Compd 935:167994. https://doi.org/10.1016/j.jallcom.2022.167994

    Article  CAS  Google Scholar 

  6. Stolyarchuk I, Kuzyk O, Dankliv O, Andrzej D, Kleto G, Andriy S, Adriy P, Hadzaman I (2023) Coatings 13(3):601. https://doi.org/10.3390/coatings13030601

    Article  CAS  Google Scholar 

  7. Govindaraj M, Babu S, Rathinam R, Vasini V, Vijayakumar K (2023) Chem Pap 77:169–183. https://doi.org/10.1007/s11696-022-02473-w

    Article  CAS  Google Scholar 

  8. Bagyalakshmi S, Sivakami A, Balamurugan KS (2020) Obes Med 18:100229. https://doi.org/10.1016/j.obmed.2020.100229

    Article  Google Scholar 

  9. Aboud AA, Shaban M, Revaprasadu N (2019) RSC Adv 9:7729–7736. https://doi.org/10.1039/C8RA10599E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali H, Alsmadi AM, Salameh B, Mathai M, Shatnawi M, Hadia NMA, Ibrahim EMM (2020) J Alloys Compd 816:152538. https://doi.org/10.1016/j.jallcom.2019.152538

    Article  CAS  Google Scholar 

  11. Zhanhong MA, Ren F, Deng Y, Volinsky AA (2020) Optik 219:165204. https://doi.org/10.1016/j.ijleo.2020.165204

    Article  ADS  CAS  Google Scholar 

  12. Ayad AM, Benharrat A, Anas L (2021) Semiconductors 55:482–490. https://doi.org/10.1134/S1063782621050043

    Article  ADS  Google Scholar 

  13. Saravanakumar K, Sakthivel P, Sankaranarayanan RK (2022). Spectrochim Acta. https://doi.org/10.1016/j.saa.2021.120487

    Article  Google Scholar 

  14. Siddheswaran R, Netrvalova M, Savkova J, Novak P, Ocenasek J, Sutta P, Kovac J, Jyavel R (2015) J Alloys Comp 636:85–92. https://doi.org/10.1016/j.jallcom.2015.02.142

    Article  CAS  Google Scholar 

  15. Jilani A, Abdel-wahab M, Sh., Al-ghamdi AA, Dahlan A, Yahia IS (2016) Phys B Condens Matter 481:97–103. https://doi.org/10.1016/j.physb.2015.10.038

    Article  ADS  CAS  Google Scholar 

  16. Kayani ZN, Riaz S, Naseem S (2019) Mater Res Exp 6:036404. https://doi.org/10.1088/2053-1591/aaf3c8

    Article  CAS  Google Scholar 

  17. Sakthivel P, Muthukumaran S (2016) J Inorg Organomet Polym 26:563–571. https://doi.org/10.1007/s10904-016-0341-7

    Article  CAS  Google Scholar 

  18. Karthick R, Sakthivel P, Selvaraju C, Paulraj MS (2021) J Nanomater 2021:8352204. https://doi.org/10.1155/2021/8352204

    Article  CAS  Google Scholar 

  19. Muniyandi I, Mani GK, Shankar P, Balaguru Rayappan JB (2013) Ceram Int 39:3901–3907. https://doi.org/10.1016/j.ceramint.2013.12.150

    Article  CAS  Google Scholar 

  20. Ramesh J, Pasupathi G, Mariappan R, Senthil Kumar V, Ponnuswamy V (2013) Optik 124:2023–2027. https://doi.org/10.1016/j.ijleo.2012.06.035

    Article  ADS  CAS  Google Scholar 

  21. Jaramillo TF, Baeck S, Shwarsctein AK, Choi KS, Stucky GD, McFarland EW (2005) J Comb Chem 7:264–271. https://doi.org/10.1021/cc049864x

    Article  CAS  PubMed  Google Scholar 

  22. Singh S, Rama N, Ramachandra Rao MS (2006) Appl Phys Lett 88:222111. https://doi.org/10.1063/1.2208563

    Article  ADS  CAS  Google Scholar 

  23. Kim KJ, Park YR (2002) Appl Phys Lett 81:1420–1422. https://doi.org/10.1063/1.1501765

    Article  ADS  CAS  Google Scholar 

  24. Sakthivel P, Muthukumaran S (2017) J Mater Sci Mater Electron 28:8309–8315. https://doi.org/10.1007/s10854-017-6545-y

    Article  CAS  Google Scholar 

  25. Gayen RN, Rajaram A, Bhar R, Pal AK (2010) Thin Solid Films 518:1627–1636. https://doi.org/10.1016/j.tsf.2009.11.067

    Article  ADS  CAS  Google Scholar 

  26. Abdel-wahab MS, Jilani A, Yahia IS, Al-Ghamdi AA (2016) Superlattices Microstruct 94:108–118. https://doi.org/10.1016/j.spmi.2016.03.043

    Article  ADS  CAS  Google Scholar 

  27. Elilarassi R, Chandrasekaran G (2010) J Mater Sci Mater Electron 22:751–756. https://doi.org/10.1007/s10854-010-0206-8

    Article  CAS  Google Scholar 

  28. Patil SK, Shinde SS, Rajpure KY (2013) Ceram Int 39:3901–3907. https://doi.org/10.1016/j.ceramint.2012.10.234

    Article  CAS  Google Scholar 

  29. Samanta A, Goswami MN, Mahapatra PK (2018) J Alloys Compd 730:399. https://doi.org/10.1016/j.jallcom.2017.09.334

    Article  CAS  Google Scholar 

  30. Srinet G, Kumar R, Sajal V (2013) J Appl Phys 114:033912. https://doi.org/10.1063/1.4813868

    Article  ADS  CAS  Google Scholar 

  31. Iqbal J, Wang B, Liu X, Yu D, He B, Yu R (2009) New J Phys 11:063009. https://doi.org/10.1088/1367-2630/11/6/063009

    Article  CAS  Google Scholar 

  32. Pal B, Sarkar D, Giri PK (2015) Appl Surf Sci 365:804. https://doi.org/10.1016/j.apsusc.2015.08.163

    Article  ADS  CAS  Google Scholar 

  33. Jadhav J, Biswas S (2016) J Alloys Comp 664:71–82. https://doi.org/10.1016/j.jallcom.2015.12.191

    Article  CAS  Google Scholar 

  34. Iskendroglua D, Guney H (2017) Ceram Int 43:16593–16599. https://doi.org/10.1016/j.ceramint.2017.09.047

    Article  CAS  Google Scholar 

  35. Shinde KP, Pawar RC, Shinha BB, Kim HS, Oh SS, Chung KC (2014) Ceram Int 40:16799. https://doi.org/10.1016/j.ceramint.2014.07.148

    Article  CAS  Google Scholar 

  36. Chithira PR, John TT (2018) J Alloy Compd 766:572–583. https://doi.org/10.1016/j.jallcom.2018.06.336

    Article  CAS  Google Scholar 

  37. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Adv Func Mater 20:561–572. https://doi.org/10.1002/adfm.200901884

    Article  CAS  Google Scholar 

  38. Penfold TJ, Szlachetko J, Santomaura FG, Britz A, Gawelda W, Doumy G, March AM, Southworth SH, Rittmann J, Abela R, Chergui M, Christopher JM (2018) Nat Commun 9:478. https://doi.org/10.1038/s41467-018-02870-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shan FK, Liu GX, Lee WJ, Lee GH, Kim IS, Shin BC (2005) Appl Phys Lett 86:221910. https://doi.org/10.1063/1.1939078

    Article  ADS  CAS  Google Scholar 

  40. Zhao S, Zhou Y, Zhao K, Liu Z, Han P, Wang S, Xiang W, Chen Z, Lü H, Cheng B, Yang G (2006) Phys B 373:154. https://doi.org/10.1016/j.physb.2005.11.116

    Article  ADS  CAS  Google Scholar 

  41. Bylander EG (1978) J Appl Phys 49:1188. https://doi.org/10.1063/1.325059

    Article  ADS  CAS  Google Scholar 

  42. Fabbiyola S, Sailaja V, John Kennedy L, Bououdina M, Judith Vijaya J (2017) J Alloy Comp 694:522. https://doi.org/10.1016/j.jallcom.2016.10.022

    Article  CAS  Google Scholar 

  43. Elilarassi R, Chandrasekaran G (2011) J Mater Sci Mater Electron 22:751. https://doi.org/10.1007/s10854-010-0206-8

    Article  CAS  Google Scholar 

  44. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA (1996) J Appl Phys 79:7983. https://doi.org/10.1063/1.362349

    Article  ADS  CAS  Google Scholar 

  45. Karthika K, Ravichandran K (2015) J Mater Sci Technol 31:1111. https://doi.org/10.1016/j.jmst.2015.09.001

    Article  CAS  Google Scholar 

  46. Nalluswamy S, Nammalvar G (2019) J Magn Magn Mater 485:297–303. https://doi.org/10.1016/j.jmmm.2019.04.089

    Article  ADS  CAS  Google Scholar 

  47. Dar TA, Agrawal A, Choudhary R, Sen P (2015) Thin Solid Films 589:817–821. https://doi.org/10.1016/j.tsf.2015.07.028

    Article  ADS  CAS  Google Scholar 

  48. Yu W, Yang LH, Teng XY, Zhang JC, Zhang ZC, Zhang L, Fu GS (2008) J Appl Phys 103:093901. https://doi.org/10.1063/1.2903524

    Article  ADS  CAS  Google Scholar 

  49. Ghazi ME, Izadifard M, Ghodsi FE, Yuonesi M (2012) J Supercond Nov Magn 25:101–108. https://doi.org/10.1007/s10948-011-1213-6

    Article  CAS  Google Scholar 

  50. Dietl T, Ohno H, Matsukura F (2001) Phys Rev B 63:195205. https://doi.org/10.1103/PhysRevB.63.195205

    Article  ADS  CAS  Google Scholar 

  51. Coey JM, Venkatesan M, Fitzgerald CB (2005) Nat Mater 4:173. https://doi.org/10.1038/nmat1310

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sivakami or B. Sundaresan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in this manuscript. All co-authors have seen and agree with the content of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, L., Balamurugan, K.S., Sivakami, A. et al. Ferromagnetic, Optical and Photoluminescence Behavior of Ni-Doped ZnO Thin Films. Top Catal 67, 3–16 (2024). https://doi.org/10.1007/s11244-023-01886-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01886-5

Keywords

Navigation