Skip to main content

Advertisement

Log in

On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Plasmonics is expected to play a key role in nanotechnology, leading to intriguing routes in many engineering and biological applications. Recently, it has been realized that toroidal resonances could be an alternative to electric and magnetic resonances, which have governed the innovation of plasmonic applications so far. In a previous contribution, we proved the existence of toroidal moments in an oligomeric void-plasmonic structure [1]. In this article, we investigate the role of topology and symmetry in decomposing the various dipolar, quadrupolar, and toroidal moments, using energy-filtering transmission electron microscopy supported by three-dimensional finite-difference time-domain method simulations. The consequences of changing the topology on the toroidal character are discussed by comparing results obtained from nanoholes forming heptamer and hexamer nanocavity systems that were drilled into a thin silver film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P.A. van Aken, Nano Lett. 12, 5239 (2012)

    Article  ADS  Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  3. E. Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  4. J.L. West, N.J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003)

    Article  Google Scholar 

  5. L. Gu, W. Sigle, C.T. Koch, B. Ögüt, P.A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, J. Mao, Phys. Rev. B 83, 195433 (2011)

    Article  ADS  Google Scholar 

  6. I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P.A. van Aken, M.E. Toimil-Molares, ACS Nano 5, 9845 (2011)

    Article  Google Scholar 

  7. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernández, I. Pastoriza-Santos, K.F. MacDonald, L. Henrard, L.M. Liz-Marzán, N.I. Zheludev, M. Kociak, Nanoletters 12, 4172 (2012)

    Article  ADS  Google Scholar 

  8. F. Hao, C.L. Nehl, J. Hafner, P. Nordlander, Nano Lett. 7, 729 (2007)

    Article  ADS  Google Scholar 

  9. F.J. Garcia de Abajo, Rev. Mod. Phys. 79, 1267 (2007)

    Article  ADS  Google Scholar 

  10. P.E. Batson, Phys. Rev. Lett. 49, 936 (1982)

    Article  ADS  Google Scholar 

  11. W. Sigle, J. Nelayah, C.T. Koch, B. Ögüt, L. Gu, P.A. van Aken, Ultramicroscopy 110, 1094 (2010)

    Article  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier, Amsterdam, 1980), p. 110ff

  13. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Science 330, 1510 (2010)

    Article  ADS  Google Scholar 

  14. Y.-W. Huang, W.T. Chen, P.C. Wu, V.A. Fedotov, N.I. Zheludev, D.P. Tsai, Sci. Rep. (2013). doi:10.1038/srep01237

    Google Scholar 

  15. Z.-G. Dong, J. Zu, X. Yin, J. Li, C. Lu, X. Zhang, Phys. Rev. B 87, 245429 (2013)

    Article  ADS  Google Scholar 

  16. R.L. Lyles, S.J. Rothman, W. Jäger, Metallography 11, 361 (1978)

    Article  Google Scholar 

  17. T. Malis, S.C. Cheng, R.F. Egerton, J. Electron Microsc. Tech. 8, 193 (1988)

    Article  Google Scholar 

  18. C.T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, M. Matijevic, Microsc. Microanal. 12, 506 (2006)

    Article  ADS  Google Scholar 

  19. E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, R. Höschen, Ultramicroscopy 110, 971 (2010)

    Article  Google Scholar 

  20. N. Talebi, W. Sigle, R. Vogelgesang, C.T. Koch, C. Fernandez-Lopez, L.M. Liz-Marzan, B. Ögüt, M. Rohm, P.A. van Aken, Langmuir 28, 8867 (2012)

    Article  Google Scholar 

  21. N. Talebi, M. Shahabadi, J. Phys. D Appl. Phys. 43, 135302 (2010)

    Article  ADS  Google Scholar 

  22. F.J. Garcia de Abajo, M. Kociak, Phys. Rev. B 100, 106801 (2008)

    Google Scholar 

  23. S.A. Maier, P.G. Kik, H.A. Atwater, S. Melzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229–232 (2003)

    Article  ADS  Google Scholar 

  24. S.M. Raeis Zadeh Bajestani, M. Shahabadi, N. Talebi, J. Opt. Soc. Am. B 28, 937–943 (2011)

    Article  ADS  Google Scholar 

  25. N. Talebi, A. Mahjoubfar, M. Shahabadi, J. Opt. Soc. Am. B 25, 2116–2122 (2008)

    Article  Google Scholar 

  26. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E.M. Girotto, A.G. Brolo, R. Gordon, D. Sinton, Anal. Chem. 81, 4308 (2009)

    Article  Google Scholar 

  27. K.J. Vahala, Nature 424, 839 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of U. Eigenthaler and I. Lakemeyer for the specimen preparation; C. T. Koch for writing the scripts regarding the EFTEM acquisition and peak finding algorithm. N. Talebi acknowledges the Alexander-von-Humboldt Foundation for financial support. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under Grant agreement no. 312483 (ESTEEM2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Talebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, N., Ögüt, B., Sigle, W. et al. On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities. Appl. Phys. A 116, 947–954 (2014). https://doi.org/10.1007/s00339-014-8532-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8532-y

Keywords

Navigation