Skip to main content
Log in

Fs-pulsed laser deposition of PbTe and PbTe/Ag thermoelectric thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the first time, thermoelectric thin films were fabricated by femtosecond pulsed laser deposition (fs-PLD) that represents a challenging technological solution for this application since it provides a correct film stoichiometry compared to the starting target, capability of native nanostructuring and a high deposition rate. In particular, this paper shows a preliminary work on PbTe and PbTe/Ag thin films deposited at different substrate temperatures by fs-PLD from a microcrystalline PbTe target. Structural, morphological and compositional characterizations of the deposited films were performed to demonstrate the formation of films composed by crystalline nanograins (about 35 nm size) and characterized by a correct stoichiometry. A remarkable deposition rate of 1.5 nm/s was evaluated. The electrical conductivity and the Seebeck coefficient (thermopower) were measured as a function of operating temperature to derive the thermoelectric power factor that was found to be less than a factor 2 with respect to the bulk materials. Finally, a discussion about the influence of compositional and structural properties of the deposited films on the related thermoelectric performances was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2), 105–114 (2008)

    Article  ADS  Google Scholar 

  3. Y. Pei, H. Weng, G.J. Snyder, Adv. Mater. 24, 6125–6135 (2012)

    Article  Google Scholar 

  4. Y. Pei, X. Shi, A. LaLonde, H. Weng, L. Chen, G.J. Snyder, Nature 473(7345), 66–69 (2011)

    Article  ADS  Google Scholar 

  5. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489(7416), 414–418 (2012)

    Article  ADS  Google Scholar 

  6. J. He, M.G. Kanatzidis, V.P. Dravid, Mater. Today 16(5), 166–176 (2013)

    Article  Google Scholar 

  7. J.D. Koenig, M. Winkler, H. Boettner, J. Electron. Mater. 38(7), 1418–1422 (2009)

    Article  ADS  Google Scholar 

  8. U.P. Khairnar, P.H. Pawar, G.P. Bhavsar, Cryst. Res. Technol. 37(12), 1293–1302 (2002)

    Article  Google Scholar 

  9. A. Dauscher, M. Dinescu, O.M. Boffoué, A. Jacquot, B. Lenoir, Thin Solid Films 497, 170–176 (2006)

    Article  ADS  Google Scholar 

  10. L.L. Baranowski, G.J. Snyder, E.S. Toberer, Energy Environ. Sci. 5, 9055–9067 (2012)

    Article  Google Scholar 

  11. J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005)

    Article  ADS  Google Scholar 

  12. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Chaeroenphakdee, S. Yamanaka, G.J. Snyder, Science 321(5888), 554–557 (2008)

    Article  ADS  Google Scholar 

  13. H.S. Dow, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, D.M. Wee, J. Appl. Phys. 108, 113709 (2010)

    Article  ADS  Google Scholar 

  14. S. Orlando, A. Santagata, G.P. Parisi, L. Medici, S. Kaciulis, A. Mezzi, A. Bellucci, E. Cappelli, D.M. Trucchi, Phys. Status Solidi C 9(3–4), 993–996 (2012)

    Article  ADS  Google Scholar 

  15. T.J.B. Holland, S.A.T. Redfern, J. Appl. Crystallogr. 30, 84 (1997)

    Article  Google Scholar 

  16. E. Agostinelli, S. Kaciulis, M. Vittori-Antisati, Appl. Surf. Sci. 156, 143–148 (2000)

    Article  ADS  Google Scholar 

  17. D.M. Trucchi, A. Zanza, A. Bellucci, V. Marotta, S. Orlando, Thin Solid Films 518, 4738–4742 (2010)

    Article  ADS  Google Scholar 

  18. D.-K. Ko, C.B. Murray, ACS Nano 5(6), 4810–4817 (2011)

    Article  Google Scholar 

  19. L. Kungumadevi, R. Sathyammorthy, Adv. Powder Technol. 24, 218–223 (2013)

    Article  Google Scholar 

  20. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley-VCH, Weinheim, 1974), pp. 424–443

    Google Scholar 

  21. A.M. Guénault, D.G. Hawksworth, J. Phys. F Met. Phys. 7, 8 (1977)

    Article  Google Scholar 

  22. J.N. Zemel, J.D. Jensen, R.B. Schoolar, Phys. Rev. 140, A330 (1965)

    Article  ADS  Google Scholar 

  23. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzdis, Nat. Chem. 3, 160–165 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Project E2PHEST2US (Grant Agreement no. 241270), funded in the context of the Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bellucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellucci, A., Cappelli, E., Orlando, S. et al. Fs-pulsed laser deposition of PbTe and PbTe/Ag thermoelectric thin films. Appl. Phys. A 117, 401–407 (2014). https://doi.org/10.1007/s00339-014-8526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8526-9

Keywords

Navigation