Skip to main content
Log in

Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are nanomaterials with many potential applications due to their excellent mechanical and physical properties. In this paper, we proposed that CNTs with clamped boundary condition under axial tensile loads were considered as CNT-based resonators. Moreover, the resonant frequencies and frequency shifts of the CNTs with attached mass were investigated based on two theoretical methods, which are Euler–Bernoulli beam theory and Rayleigh’s energy method. Using the present methods, we analyzed and discussed the effects of the aspect ratio, the concentrated mass and the axial force on the resonant frequency of the CNTs. The results indicate that the length of CNTs could be easily changed and could provide higher sensitivity as nanomechanical mass sensor. Moreover, the resonant frequency shifts of the CNT resonator increase significantly with increasing tensile load acting on the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.T. Thostenson, Z. Ren, T.W. Chou, Comp. Sci. Tech. 61, 1899 (2001)

    Article  Google Scholar 

  2. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996)

    Article  ADS  Google Scholar 

  3. T. Natsuki, K. Tantrakarn, M. Endo, Appl. Phys. A 79, 117 (2004)

    Article  ADS  Google Scholar 

  4. R.M. Zachary, J. Davis, D.N. Madsen, K. Molhave, P. Boggild, A.M. Rassmusen, M. Brorson, C.J.H. Jacobsen, A. Boisen, Microelectron. Eng. 73–74, 670 (2004)

    Google Scholar 

  5. B. Mahar, C. Laslau, R. Yip, Y. Sun, IEEE Sens. J. 7, 266 (2007)

    Article  Google Scholar 

  6. K. Balasubramanian, M. Burghard, Small 1, 180 (2005)

    Article  Google Scholar 

  7. Y. Wang, J.T.W. Yeow, J. Sens. 2009, 493904 (2009)

    Article  Google Scholar 

  8. V. Kumar, A.A. Bergman, A.A. Gorokhovsky, A.M. Zaitsev, Carbon 49, 1385 (2011)

    Article  Google Scholar 

  9. S. Ghosh, A.K. Sood, N. Kumar, Science 299, 1042 (2003)

    Article  ADS  Google Scholar 

  10. J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)

    Article  Google Scholar 

  11. M. Penza, F. Antolini, M.V. Antisari, Sens. Actuators B Chem. 100, 47 (2004)

    Article  Google Scholar 

  12. G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Biosens. Bioelectron. 20, 2140 (2005)

    Article  Google Scholar 

  13. K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker, Nano Lett. 3, 6 (2003)

    Article  Google Scholar 

  14. S. Sivaramakrishnan, R. Rajamani, C.S. Smith, K.A. McGee, K.R. Mann, N. Yamashita, Sens. Actuators B Chem. 132, 296 (2008)

    Article  Google Scholar 

  15. J.R. Wood, H.D. Wagner, Appl. Phys. Lett. 76, 2883 (2000)

    Article  ADS  Google Scholar 

  16. I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D.L. Shi, Smart Mater. Struct. 15, 737 (2006)

    Article  ADS  Google Scholar 

  17. Z.L. Li, P. Dharap, S. Nagarajaiah, E.V. Barrera, J.D. Kim, Adv. Mater. 16, 640 (2004)

    Article  Google Scholar 

  18. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Nano Lett. 8, 3735 (2008)

    Article  ADS  Google Scholar 

  19. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. Heer, Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  20. K. Jensen, K. Kim, A. Zettl, Nat. Nanotechnol. 3, 533 (2008)

    Article  ADS  Google Scholar 

  21. Z.L. Wang, P. Poncharal, W.A. Heer, Pure Appl. Chem. 72, 209 (2000)

    Article  Google Scholar 

  22. C. Li, T.W. Chou, Phys. Rev. B 68, 073405 (2003)

    Article  ADS  Google Scholar 

  23. H. Lee, J.C. Hsu, W.J. Chang, Nanoscale Res. Lett. 5, 1774 (2010)

    Article  ADS  Google Scholar 

  24. Z.B. Shen, L.P. Sheng, X.F. Li, G.J. Tang, Phys. E 44, 1169 (2012)

    Article  Google Scholar 

  25. I. Mehdipour, A. Barari, G. Domairry, Comp. Mater. Sci. 50, 1830 (2011)

    Article  Google Scholar 

  26. I. Mehdipour, A. Barari, Comp. Mater. Sci. 55, 136 (2012)

    Article  Google Scholar 

  27. I. Elishakoff, C. Versaci, N. Maugeri, G. Muscolino, J. Nanotechnol, Eng. Med. 2, 021001 (2011)

    Google Scholar 

  28. S. Adali, Nano Lett. 9, 1737 (2009)

    Article  ADS  Google Scholar 

  29. T. Natsuki, Q.Q. Ni, M. Endo, Carbon 46, 1570 (2008)

    Article  Google Scholar 

  30. T. Natsuki, X.W. Lei, Q.Q. Ni, M. Endo, Phys. Lett. A 374, 2670 (2010)

    Article  ADS  MATH  Google Scholar 

  31. A. Gupta, S.C. Sharma, S.P. Harsha, MIT Int. J. Mech. Eng. 2, 8 (2012)

    Google Scholar 

  32. Z.B. Shen, X.F. Li, L.P. Sheng, G.J. Tang, Comp. Mater. Sci. 53, 340 (2012)

    Article  Google Scholar 

  33. T. Natsuki, X.W. Lei, Q.Q. Ni, M. Endo, Phys. Lett. A 374, 2670–2674 (2010)

    Article  ADS  MATH  Google Scholar 

  34. A. Kis, Z. Phil, Trans. R. Soc. A 366, 1591 (2008)

    Article  ADS  Google Scholar 

  35. C. Li, T.W. Chou, Appl. Phys. Lett. 25, 5246 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Natsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsuki, T., Matsuyama, N., Shi, JX. et al. Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A 116, 1001–1007 (2014). https://doi.org/10.1007/s00339-014-8289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8289-3

Keywords

Navigation