Skip to main content
Log in

Structure and optical property changes of Nb\(_{2}\)O\(_{5}\) particles by Q-switched laser pulses in water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Monoclinic H-type Nb\(_{2}\)O\(_{5}\) powders subjected to Q-switched laser pulses in water were characterized by X-ray/electron diffraction and optical spectroscopy to have a significant optical property change with accompanied transformation into orthorhombic T-, pseudohexagonal TT-type and an amorphous phase. The T-Nb\(_{2}\)O\(_{5}\) nanoparticles were (100), (010), (001) and (\(\overline{2} \)01) faceted and commonly in oriented intergrowth with TT-type or amorphized domains retaining the polymerized block units of the relic H-type. Such multiple-phase nanoparticles were hydrogenated and densified to modify Raman and FTIR bands and to show visible absorptions corresponding to a broad minimum band gap of 2.3–2.8 eV for potential opto-catalytic and electrochromic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Brauer, Z. Anorg, Allg. Chem. 248, 1 (1941)

    Article  Google Scholar 

  2. H. Schäfer, R. Gruehn, F. Schulte, Angew. Chem. Int. Ed. 5, 1 (1966)

    Article  Google Scholar 

  3. J.L. Waring, R.S. Roth, H.S. Parker, J. Res, Nat. Bur. Stand. Sec. A Phys. Chem. 77, 705 (1973)

    Article  Google Scholar 

  4. V.P. Filonenko, I.P. Zibrov, Inorg. Mater. 37, 953 (2001)

    Google Scholar 

  5. I.E. Wachs, Y. Chen, J.M. Jehng, L.E. Briand, T. Tanaka, Catal. Today 78, 13 (2003)

  6. N. Özer, D.G. Chen, C.M. Lampert, Thin Solid Films 277, 162 (1996)

    Article  ADS  Google Scholar 

  7. Z.W. Fu, J.J. Kong, Q.Z. Qin, J. Electrochem. Soc. 146, 3914 (1999)

    Article  Google Scholar 

  8. P.P. George, V.G. Pol, A. Gedanken, Nanoscale Res. Lett. 2, 17 (2007)

    Article  ADS  Google Scholar 

  9. B. Varghese, S.C. Haur, C.T. Lim, J. Phys. Chem. C 112, 10008 (2008)

    Article  Google Scholar 

  10. D. Rosenfeld, P.E. Schmid, S. Széles, F. Lévy, V. Demarne, A. Grisel, Sensors Actuators B 37, 83 (1996)

    Article  Google Scholar 

  11. U. Cvelbar, K. Ostrikov, A. Drenik, M. Mozetic, Appl. Phys. Lett. 92, 133505 (2008)

    Article  ADS  Google Scholar 

  12. G. Yang, Laser ablation in liquids: principles and applications in the preparation of nanomaterials (Pan Stanford Publishing, Singapore, 2012)

    Book  Google Scholar 

  13. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  14. S. Barcikowski, F. Devasa, K. Moldenhauer, J. Nanopart. Res. 11, 1883 (2009)

    Article  Google Scholar 

  15. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  16. S. Sakamoto, M. Fujutsuka, T. Majima, J. Photochem. Photobiol. C 10, 33 (2009)

    Article  Google Scholar 

  17. N.G. Semaltianos, Crit. Rev. Solid State Mater. Sci. 35, 105 (2010)

    Article  ADS  Google Scholar 

  18. S.B. Ogale, A.P. Malshe, S.M. Kanetkar, S.T. Kshirsagar, Solid State Commun. 84, 371 (1992)

    Article  ADS  Google Scholar 

  19. H.D. Lu, B.C. Lin, S.Y. Chen, P. Shen, J. Phys. Chem. C 115, 24577 (2011)

    Article  Google Scholar 

  20. P.W. Lin, C.H. Wu, Y. Zheng, S.Y. Chen, P. Shen, J. Phys. Chem. Solids 74, 1281 (2013)

    Article  ADS  Google Scholar 

  21. G. Chryssolouris, Laser machining—theory and practice (Springer, New York, 1991)

    Book  Google Scholar 

  22. S. Iijima, Acta Cryst. A 29, 18 (1973)

    Article  Google Scholar 

  23. J.Y. Liang, PLAL fragmentation of Nb\(_{2}\)O\(_{5}\) powders in water with optional NaCl addition, M.S. Thesis, National Sun Yat-sen University, Taiwan, 2012.

  24. L.K. Frevel, H.W. Rinn, Anal. Chem. 27, 1329 (1955)

    Article  Google Scholar 

  25. B.M. Gatehouse, A.D. Wadsley, Acta Cryst. 17, 1545 (1964)

    Article  Google Scholar 

  26. A.A. McConnell, J.S. Anderson, C.N.R. Rao, Spectrochimica Acta A 32, 1067 (1976)

    Article  ADS  Google Scholar 

  27. T. Ikeya, M. Senna, J. Non-Cryst, Solids 105, 243 (1988)

    Google Scholar 

  28. H.M. Jehng, I.E. Wachs, Chem. Mater. 3, 100 (1991)

    Article  Google Scholar 

  29. V. Bhide, E. Husson, M. Gasperin, Mater. Res. Bull. 15, 1339 (1980)

    Article  Google Scholar 

  30. B. Orel, M. Maček, J. Grdadolnik, A. Meden, J. Solid State Electrochem. 2, 221 (1998)

    Article  Google Scholar 

  31. L.A. Rodrigues, M.L.C.P. da Silva, Colloid Surf. A 334, 191 (2009)

    Article  Google Scholar 

  32. Y. Inaki, H. Yoshida, T. Yoshida, T. Hattori, J. Phys. Chem. B 106, 9098 (2002)

    Article  Google Scholar 

  33. Z.L. Chen, C.H. Wu, P. Shen, S.Y. Chen, J. Nanosci. Nanotech. 12, 7066 (2012)

    Article  Google Scholar 

  34. K. Kato, S. Tamura, Acta Crystallogr. B 31, 673 (1975)

    Article  Google Scholar 

  35. M. Kikuchi, K. Kusaba, E. Bannai, K. Fukuoka, Y. Syono, K. Hiraga, Jpn. J. Appl. Phys. 24, 1600 (1985)

    Article  ADS  Google Scholar 

  36. T. Ikeya, M. Senna, J. Mater. Sci. 22, 2497 (1987)

    Article  ADS  Google Scholar 

  37. H. Schäfer, G. Breil, Z. Anorg, Allg. Chem. 267, 265 (1952)

    Article  Google Scholar 

  38. L.A. Aleshina, V.P. Malnenko, A.D. Phouphanov, N.M. Jakovleva, J. Non Cryst. Solids 87, 350 (1986)

    Article  ADS  Google Scholar 

  39. S.Y. Chen, P.Shen, J. Jiang, J. Chem. Phys. 121, 11309 (2004) and literatures cited therein

  40. S.R Elliott, Physics of amorphous materials. 2nd edn. (Longman Scientific & Technical, Essex, 1990) pp. 24–25

  41. J. Wu, J. Li, X. Lü, L. Zhang, J. Yao, F. Zhang, F. Huang, F. Xu, J. Mater. Chem. 20, 1942 (2010)

    Google Scholar 

  42. R. Brayner, F. Bozon-Verduraz, Phys. Chem. Chem. Phys. 5, 1457 (2003)

    Article  Google Scholar 

  43. P. Hartman, W.G. Perdok, Acta Crystallogr. 8, 49 (1955)

    Google Scholar 

  44. C. Yan, D. Xue, Adv. Mater. 20, 1055 (2008)

    Google Scholar 

  45. K. Tanabe, Catal. Today 78, 65 (2003)

    Article  Google Scholar 

  46. A.V. Rosario, E.C. Pereira, J. Solid State Electrochem. 9, 665 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank B.C. Lin for some early PLA runs and the anonymous referees for their constructive comments. This research was supported by the Center for Nanoscience and Nanotechnology at NSYSU and partly by National Science Council, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuei-Yuan Chen.

Appendix

Appendix

See Figs. 10, 11 and 12.

Fig. 10
figure 10

a SEM of the starting H-Nb\(_{2}\)O\(_{5}\) powder ranging from submicron (dotted circle) to micron size (solid circle) which have well-developed (101) surface and planar defects as revealed by b TEM BFI

Fig. 11
figure 11

Raman spectrum of starting Nb\(_{2}\)O\(_{5}\) powder having vibration mode assignments after McConnell et al [26]

Fig. 12
figure 12

Optical photos showing color of the colloidal Nb\(_{2}\)O\(_{5}\) suspension before (left panel) and after PLA in a DI water, b NaCl-saturated water

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, JY., Wu, CH., Zheng, Y. et al. Structure and optical property changes of Nb\(_{2}\)O\(_{5}\) particles by Q-switched laser pulses in water. Appl. Phys. A 115, 1429–1438 (2014). https://doi.org/10.1007/s00339-013-8059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8059-7

Keywords

Navigation