Skip to main content
Log in

A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Residual stresses in machined surface are regarded as a critical factor affecting the quality and service life of components. However, little research has been conducted to reveal the formation of residual stresses as well as the relation between machining conditions and residual stresses at the nanometric scale. In this study, residual stresses in machined surfaces of monocrystalline silicon are computed based on molecular dynamics simulation. An orthogonal machining configuration is adopted, and diamond cutting tools are used. The numerical approach developed is able to reveal stress evolution during and after machining, as well as in-depth residual stress distributions. The results indicate that the material stresses are stabilized within a manageable amount of computation time, and the in-depth normal stress along the tool moving direction has a more dynamical and significant pattern compared with other stress components. Meanwhile, the effects of depth of cut and tool rake angle are investigated. It is found that the increase of depth of cut results in the decrease of maximum tensile residual stress on the machined surfaces and the increase of maximum compressive residual stress underneath the surface. Similar observations are observed when the tool rake angle changes from positive to negative. It is believed that the more negative tool rake angles or the larger depths of cut induce a more drastic phase transformation to the machined surfaces, and this makes the in-depth residual stress distributions more compressive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Q. Zhang, M. Mahfouf, J.R. Yates, C. Pinna, G. Panoutsos, S. Boumaiza, L. de Leon, Modeling and optimal design of machining-induced residual stresses in aluminium alloys using a fast hierarchical multiobjective optimization algorithm. Mater. Manuf. Process. 26, 508–520 (2011)

    Article  Google Scholar 

  2. C. Acevedo, A. Nussbaumer, Effect of tensile residual stresses on fatigue crack growth and S-N curves in tubular joints loaded in compression. Int. J. Fatigue 36, 171–180 (2012)

    Article  Google Scholar 

  3. T. Obikawa, M.T. Postek, D. Dornfeld, C.R. Liu, R. Komanduri, Y. Guo, J. Shi, J. Cao, J. Zhou, X. Yang, X. Li, State-of-art paper: micro/nano-technology applications for manufacturing systems and processes, in Proc. MSEC 2009, ASME 2009 Int. Manufacturing Science and Engineering Conf., 4–7 October 2009, West Lafayette, Indiana, CD-ROM

    Google Scholar 

  4. R.G. Sparks, M. Paesler, Depth profiling of residual stress along interrupted test cuts in machined germanium crystals. J. Appl. Phys. 71, 891 (1992)

    Article  ADS  Google Scholar 

  5. T. Shibata, S. Fujii, E. Makino, M. Ikeda, Ductile-regime turning mechanism of single-crystal silicon. Precis. Eng. 18, 129–137 (1996)

    Article  Google Scholar 

  6. G. Lucazeau, L. Abello, Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation. J. Mater. Res. 12, 2262–2273 (1997)

    Article  ADS  Google Scholar 

  7. J. Yan, T. Asami, T. Kuriyagawa, Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy. Precis. Eng. 32, 186–195 (2008)

    Article  Google Scholar 

  8. Y. Zhang, D. Wang, W. Gao, R. Kang, Residual stress analysis on silicon wafer surface layers induced by ultra-precision grinding. Rare Met. 30, 278–281 (2011)

    Article  Google Scholar 

  9. R.G. Jasinevicius, J.G. Duduch, L. Montanari, P.S. Pizani, Phase transformation and residual stress probed by Raman spectroscopy in diamond-turned single crystal silicon. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222, 1065–1073 (2008)

    Article  Google Scholar 

  10. Z.J. Pei, P.M. Ferreira, Modeling of ductile mode material removal in rotary ultrasonic machining. Int. J. Mach. Tools Manuf. 38, 1399–1418 (1998)

    Article  Google Scholar 

  11. Y.B. Tian, L. Zhou, Z.W. Zhong, H. Sato, J. Shimizu, Finite element analysis of deflection and residual stress on machined ultra-thin silicon wafers. Semicond. Sci. Technol. 26, 105002 (2011)

    Article  ADS  Google Scholar 

  12. H.T. Young, H.T. Liao, H.Y. Huang, Novel method to investigate the critical depth of cut of ground silicon wafer. J. Mater. Process. Technol. 182, 157–162 (2007)

    Article  Google Scholar 

  13. T. Inamura, N. Takezawa, Y. Kumakia, Mechanics and energy dissipation in nanoscale cutting. CIRP Ann. 42, 79–82 (1993)

    Article  Google Scholar 

  14. T. Inamura, N. Takezawa, Y. Kumaki, T. Sata, On a possible mechanism of shear deformation in nanoscale cutting. CIRP Ann. 43, 47–50 (1994)

    Article  Google Scholar 

  15. K.K. Maekawa, A.A. Itoh, Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear 188, 115–122 (1995)

    Article  Google Scholar 

  16. T. Fang, C. Weng, Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11, 148–153 (2000)

    Article  ADS  Google Scholar 

  17. C. Ji, Y. Wang, J. Shi, Z. Liu, Friction on tool/chip interface in nanometric machining of copper, in Proc. IMECE 2012, ASME Int. Mechanical Engineering Congr. Expos., 9–15 November 2012, Houston, Texas, CD-ROM

    Google Scholar 

  18. R. Komanduri, M. Lee, L.M. Raff, The significance of normal rake in oblique machining. Int. J. Mach. Tools Manuf. 44, 1115–1124 (2004)

    Article  Google Scholar 

  19. Z. Lin, J. Huang, The influence of different cutting speeds on the cutting force and strain-stress behaviors of single crystal copper during nano-scale orthogonal cutting. J. Mater. Process. Technol. 201, 477–482 (2008)

    Article  Google Scholar 

  20. Q.X. Pei, C.C. Lu, H.P. Lee, Large scale molecular dynamics study of nanometric machining of copper. Comput. Mater. Sci. 41, 177–185 (2007)

    Article  Google Scholar 

  21. R. Komanduri, N. Chandrasekaran, L.M. Raff, MD simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting. Wear 242, 60–88 (2000)

    Article  Google Scholar 

  22. J. Shi, Y. Shi, C.R. Liu, Evaluation of three dimensional single point turning at atomistic level by molecular dynamics simulation. Int. J. Adv. Manuf. Technol. 54, 161–171 (2011)

    Article  Google Scholar 

  23. M.F. Aly, E.E. Ng, S.C. Veldhuis, M.A. Elbestawi, Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis force model”. Int. J. Mach. Tools Manuf. 46, 1727–1739 (2006)

    Article  Google Scholar 

  24. X. Sun, S. Chen, K. Cheng, D. Huo, W. Chu, Multiscale simulation on nanometric cutting of single crystal copper. J. Eng. Manuf. 220, 1217–1222 (2006)

    Article  Google Scholar 

  25. B. Shiari, R.E. Miller, D.D. Klug, Multiscale simulation of material removal processes at the nanoscale. J. Mech. Phys. Solids 55, 2384–2405 (2007)

    Article  ADS  MATH  Google Scholar 

  26. F.Z. Fang, H.H. Wu, W.W. Zhou, X.T. Hu, A study on mechanism of nano-cutting single crystal silicon. J. Mater. Process. Technol. 184, 407–410 (2007)

    Article  Google Scholar 

  27. M.B. Cai, X.P. Li, M.M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J. Mater. Process. Technol. 192, 607–612 (2007)

    Article  Google Scholar 

  28. M.B. Cai, X.P. Li, M.M. Rahman, Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear 263, 1459–1466 (2007)

    Article  Google Scholar 

  29. L.L. Zhang, H.H. Tanaka, Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol. Int. 31, 425–434 (1998)

    Article  Google Scholar 

  30. W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11, 173–180 (2000)

    Article  ADS  Google Scholar 

  31. Y.H. Lin, T.C. Chen, A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation. Appl. Phys. A, Mater. Sci. Process. 92, 571–578 (2008)

    Article  ADS  Google Scholar 

  32. X. Hu, Y. Han, S. Yu, Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method. Appl. Phys. A, Mater. Sci. Process. 95, 899–905 (2009)

    Article  ADS  Google Scholar 

  33. LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/

  34. P.S. Sreejith, Machining force studies on ductile machining of silicon nitride. J. Mater. Process. Technol. 169, 414–417 (2005)

    Article  Google Scholar 

  35. C. Jiaxuan, L. Yingchun, W. Liquan, H. Xinglei, Atomics simulation of cutting velocity dependency in AFM-based nanomachining process. Appl. Mech. Mater. 80, 448–451 (2011)

    Google Scholar 

  36. T.G. Kumbera, H.P. Cherukuri, J.A. Patten, C.J. Brand, T.D. Marusich, Numerical simulations of ductile machining of silicon nitride with a cutting tool of defined geometry. Mach. Sci. Technol. 5, 341–352 (2001)

    Article  Google Scholar 

  37. M.S. El-Gallab, M.P. Sklad, Machining of aluminum/silicon carbide particulate metal matrix composites: Part IV. Residual stresses in the machined workpiece. J. Mater. Process. Technol. 152, 23–34 (2004)

    Article  Google Scholar 

  38. M. Jacobson, P. Dahlman, F. Gunnberg, Cutting speed influence on surface integrity of hard turned bainite steel. J. Mater. Process. Technol. 128, 318–323 (2002)

    Article  Google Scholar 

  39. R. M’saoubi, J.C. Outeiro, B. Changeux, J.L. Lebrun, A. Morao Dias, Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J. Mater. Process. Technol. 96, 225–233 (1999)

    Article  Google Scholar 

  40. J. Rech, A. Moisan, Surface integrity in finish hard turning of case-hardened steels. Int. J. Mach. Tools Manuf. 43, 543–550 (2003)

    Article  Google Scholar 

  41. J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632–635 (1986)

    Article  ADS  Google Scholar 

  42. T. Ohira, T. Inamuro, T. Adachi, Molecular dynamics simulation of amorphous silicon with Tersoff potential. Sol. Energy Mater. Sol. Cells 34, 565–570 (1994)

    Article  Google Scholar 

  43. Y. Wang, J. Shi, Effects of water molecules on tribological behavior and property measurements in nano-indentation processes—a numerical analysis. Nanoscale Res. Lett. 8, 389 (2013)

    Article  ADS  Google Scholar 

  44. C.S. Moura, L. Amaral, Molecular dynamics simulation of silicon nanostructures. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 228, 37–40 (2005)

    Article  ADS  Google Scholar 

  45. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  ADS  Google Scholar 

  46. J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003)

    Article  ADS  MATH  Google Scholar 

  47. P.N. Blake, R.O. Scattergood, Ductile-regime machining of germanium and silicon. J. Am. Ceram. Soc. 73, 949–957 (1990)

    Article  Google Scholar 

  48. Y. Gogotsi, G. Zhou, S. Cetinkunt, Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond. Sci. Technol. 16, 345–352 (2001)

    Article  ADS  Google Scholar 

  49. Y. Gogotsi, C. Kirscht, Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon. Semicond. Sci. Technol. 14, 936–944 (1999)

    Article  ADS  Google Scholar 

  50. D.D. Ulutan, B.B. Erdem Alaca, I.I. Lazoglu, Analytical modelling of residual stresses in machining. J. Mater. Process. Technol. 183, 77–87 (2007)

    Article  Google Scholar 

  51. O.O. Belgasim, M.H. El-Axir, Modeling of residual stresses induced in machining aluminum magnesium alloy (Al–3Mg), in Proc. World Congr. Engineering (2010), p. 2184

    Google Scholar 

  52. R. Ihara, J. Katsuyama, K. Onizawa, T. Hashimoto, Y. Mikami, M. Mochizuki, Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution. Nucl. Eng. Des. 241, 1335–1344 (2011)

    Article  Google Scholar 

  53. M.A. Tawfiq, Finite element analysis of the rake angle effects on residual stresses in a machined layer. Eng. Technol. 25, 36–48 (2007)

    Google Scholar 

  54. P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 147, 181–184 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Shi, J. & Ji, C. A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl. Phys. A 115, 1263–1279 (2014). https://doi.org/10.1007/s00339-013-7977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7977-8

Keywords

Navigation