Skip to main content
Log in

Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Surface integrity of parts can seriously be damaged by mechanical and thermal loads during machining leading to crack initiation, constraining of parts or damage. At present, it is very difficult to observe the diverse nanoscale physical phenomena occurring through experiments due to in-process measurement problems, inaccessible contact area of tool and workpiece, and the difficulty of surface analysis at this range. Therefore, more insight is needed, which on the long run will help to achieve high precision manufacturing with predictability, repeatability, and productivity. The most logical method presently is to explore available simulation techniques. Of the many methods of simulation, atomistic simulation methods have proven to be suitable techniques for modeling at the nanoscale. Molecular dynamics (MD) is a comprehensive physical model that contains inherent information such as geometry, velocities, and forces which can be used to derive others like energy, temperature, and stresses, thereby providing support to a wider range of engineering problems such as simulations of ductile and brittle materials. This paper is aimed at reviewing journals on the use of classical MD method (corroborating it with experimental findings) for nanoscale machining of silicon with references to its use in nanomachining of other metals when necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulkadir LN, Abou-El-Hossein K, Jumare AI, Odedeyi PB, Liman MM, Olaniyan TA (2018) Ultra-precision diamond turning of optical silicon—a review. Int J Adv Manuf Technol:1–36

  2. Zhang S, S. To, Zhu Z, Zhang G (2016) A review of fly cutting applied to surface generation in ultra-precision machining. Int J Mach Tools Manuf 103:13–27

    Google Scholar 

  3. Otieno T, Abou-El-Hossein K, Hsu W, Cheng Y, Mkoko Z (2005) Surface roughness when diamond turning RSA 905 optical aluminium. In: SPIE Optical Engineering+ Applications, 957509–957509-6

  4. Olufayo O, Abou-El-Hossein K, Kadernani M (2014) Tribo-electric charging in the ultra-high precision machining of contact Lens polymers. Procedia Mater Sci 6:194–201

    Google Scholar 

  5. Jumare AI, Abou-El-Hossein K, Abdulkadir L (2017) Review of ultra-high precision diamond turning of silicon for infrared optics. PONTE Int Sci Res J 73(11):58–123

    Google Scholar 

  6. Ravindra D, Patten J (2011) Ductile regime material removal of silicon carbide (SIC). Nova Science Publishers, Inc

  7. Zhong Z (2003) Ductile or partial ductile mode machining of brittle materials. Int J Adv Manuf Technol 21(8):579–585

    Google Scholar 

  8. Riemer O (2011) Advances in ultra precision manufacturing. Proc Jpn Soc Precis Eng

  9. Yan J, Yoshino M, Kuriagawa T, Shirakashi T, Syoji K, Komanduri R (2001) On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications. Mater Sci Eng 297(1–2):230–234

    Google Scholar 

  10. Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Technol 121(2):363–372

    Google Scholar 

  11. Abou-El-Hossein K (2013) Quality of silicon convex lenses fabricated by ultra-high precision diamond machining. S Afr J Ind Eng 24(1):91–97

    Google Scholar 

  12. Zhang SJ, S. To, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95

    Google Scholar 

  13. Arif M, Rahman M, San WY (2012) A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol 63(5):481–504

    Google Scholar 

  14. Tie G, Dai Y, Guan C, Zhu D, Song B (2013) Research on full-aperture ductile cutting of KDP crystals using spiral turning technique. J Mater Process Technol 213(12):2137–2144

    Google Scholar 

  15. Beckstette K (2008) Trends in asphere and freeform optics. In: Proc. of Optonet Workshop

  16. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford university press

  17. Leach AR (2001) Molecular modelling: principles and applications. Pearson education

  18. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge university press

  19. Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide, vol 21. Springer Science & Business Media

  20. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459–466

    MathSciNet  Google Scholar 

  21. Alder B, Wainwright T (1960) Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J Chem Phys 33(5):1439–1451

    MathSciNet  Google Scholar 

  22. Alder B, Wainwright T (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208–1209

    Google Scholar 

  23. Ercolessi F (1997) A molecular dynamics primer, Spring college in computational physics, vol 19. ICTP, Trieste

    Google Scholar 

  24. Hernández E (2008) Molecular dynamics: from basic techniques to applications (a molecular dynamics primer). In: AIP Conference Proceedings, 95–123

  25. Kenny SD, Mulliah D, Sanz-Navarro CF, Smith R (1833) Molecular dynamics simulations of nanoindentation and nanotribology. Philos Trans A Math Phys Eng Sci 2005(363):1949–1959

    Google Scholar 

  26. Smith R, Christopher D, Kenny SD, Richter A, Wolf B (2003) Defect generation and pileup of atoms during nanoindentation of Fe single crystals. Phys Rev B 67(24):245405

    Google Scholar 

  27. Cheng K, Luo X, Ward R, Holt R (2003) Modeling and simulation of the tool wear in nanometric cutting. Wear 255(7–12):1427–1432

    Google Scholar 

  28. Shimizu J, Eda H, Yoritsune M, Ohmura E (1998) Molecular dynamics simulation of friction on the atomic scale. Nanotechnology 9(2):118

    Google Scholar 

  29. Potirniche G, Horstemeyer M, Wagner G, Gullett P (2006) A molecular dynamics study of void growth and coalescence in single crystal nickel. Int J Plast 22(2):257–278

    Google Scholar 

  30. Zhao K, Chen C, Shen Y, Lu T (2009) Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput Mater Sci 46(3):749–754

    Google Scholar 

  31. Cai MB, Li XP, Rahman M (2007) Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation. Int J Mach Tool Manu 47(1):75–80

    Google Scholar 

  32. Chen Y, Fang F, Zhang X, Hu X (2010) Molecular dynamics investigation of cutting force in nanometric cutting of monocrystalline silicon. Am J Nanotechnol 1(2):62–67

    Google Scholar 

  33. Goel S, Luo X, Reuben RL, Rashid WB (2011) Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting. Nanoscale Res Lett 6:589

    Google Scholar 

  34. Belak J, Stowers I (1990) A molecular dynamics model of the orthogonal cutting process. Lawrence Livermore National Lab., Livermore

    Google Scholar 

  35. Olufayo OA, Abou-El-Hossein K (2013) Molecular dynamics modeling of nanoscale machining of silicon. Procedia CIRP 8:504–509

    Google Scholar 

  36. Oluwajobi A (2012) In: Wang PL (ed) Molecular dynamics simulation of nanoscale machining, Molecular dynamics-studies of synthetic and biological macromolecules. InTech

  37. Chen Y, Fang F, Zhang X, Hu X (2010) Molecular dynamics investigation of cutting force in nanometric cutting of monocrystalline silicon, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, China. Am J Nanotechnol 1(2):62–67

    Google Scholar 

  38. Ye YY, Biswas R, Morris JR, Bastawros A, Chandra A (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14(3):390–396

    Google Scholar 

  39. Goel S, Luo X, Reuben RL, Rashid WB (2012) Replacing diamond cutting tools with CBN for efficient nanometric cutting of silicon. Mater Lett 68:507–509

    Google Scholar 

  40. Goel S, Luo X, Reuben RL (2012) Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl Phys Lett 100(23):231902

    Google Scholar 

  41. Goel S, Faisal NH, Ratia V, Agrawal A, Stukowski A (2014) Atomistic investigation on the structure–property relationship during thermal spray nanoparticle impact. Comput Mater Sci 84:163–174

    Google Scholar 

  42. Shimada S, Ikawa N (1992) Molecular dynamics analysis as compared with experimental results of micromachining. CIRP Ann Manuf Technol 41(1):117–120

    Google Scholar 

  43. Belak J, Boercker DB, Stowers IF (1993) Simulation of nanometer-scale deformation of metallic and ceramic surfaces. MRS Bull 18(5):55–60

    Google Scholar 

  44. Komanduri R, Ch and rasekaran N, Raff L (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81(12):1989–2019

    Google Scholar 

  45. Chavoshi SZ, Luo X (2016) Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C–SiC. RSC Adv 6(75):71409–71424

    Google Scholar 

  46. Promyoo R, El-Mounayri H, Yang X (2008) Molecular dynamics simulation of nanometric machining under realistic cutting conditions. In: Proceedings of ASME International Conference on Manufacturing Science and Engineering, 235–243

  47. Shimizu J, Zhou L, Eda H (2006) Molecular dynamics simulation of vibration-assisted cutting: influences of vibration, acceleration and velocity. Int J Nanomanuf 1(1):105–116

    Google Scholar 

  48. Shimizu J, Zhou L, Eda H (2006) Molecular dynamics simulation of vibration-assisted cutting: influences of vibration parameters. Int J Manuf Technol Manag 9(1–2):120–129

    Google Scholar 

  49. Liman MM, Abou-El-Hossein K, Jumare AI, Odedeyi PB, Lukman AN (2017) Modelling of surface roughness in ultra-high precision turning of an RGP contact lens polymer. Key Eng Mater:183–187

  50. Element Six, L. Diamond tool materials for metalworking [Online] [Online]

  51. Fulemova J, Janda Z (2014) Influence of the cutting edge radius and the cutting edge preparation on tool life and cutting forces at inserts with wiper geometry. Procedia Eng 69:565–573

    Google Scholar 

  52. Zhou YH (2017) The application and performance of diamond and pcbn tools in difficult-to-cut materials. Solid State Phenom:90–96

  53. Wang J, Wan L, Chen J, Yan J (2017) Micropatterning of diamond crystallites via cobalt-catalyzed thermochemical etching. J Mater Sci 52(2):709–720

    Google Scholar 

  54. Denkena B, Lucas A, Bassett E (2011) Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load. CIRP Ann Manuf Technol 60(1):73–76

    Google Scholar 

  55. Zong W, Li Z, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tools Manuf 50(4):411–419

    Google Scholar 

  56. Nassau K, Nassau J (1979) The history and present status of synthetic diamond. J Cryst Growth 46(2):157–172

    Google Scholar 

  57. John P, Polwart N, Troupe C, Wilson J (2002) The oxidation of (100) textured diamond. Diam Relat Mater 11(3):861–866

    Google Scholar 

  58. Kumar MP, Ramakrishna N, Amarnath K, Kumar MS, Kumar MP, Ramakrishna N et al (2015) Study on tool life and its failure mechanisms. Int J 2:126–131

    Google Scholar 

  59. Wang Z, Dong L, Wang D, Dong Y (2012) Study of HPHT single crystal diamond as precision cutting tool material. Precis Eng 36(1):162–167

    Google Scholar 

  60. Obata K (2016) Single-crystal diamond cutting tool for ultra-precision processing. Sci Tech Rev 82:83

    Google Scholar 

  61. Breeding CM, Shigley JE (2009) The type classification system of diamonds and its importance in gemology. Gems Gemmol 45(2):96–111

    Google Scholar 

  62. Tan Y, Yang D, Sheng Y (2009) Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J Eur Ceram Soc 29(6):1029–1037

    Google Scholar 

  63. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443

    Google Scholar 

  64. Wong C (1981) Fracture and wear of diamond cutting tools. J Eng Mater Technol 103(4):341–345

    Google Scholar 

  65. Ikawa N, Shimada S, Tsuwa H (1985) Non-destructive strength evaluation of diamond for ultra-precision cutting tool. CIRP Ann Manuf Technol 34(1):117–120

    Google Scholar 

  66. Zong WJ, Li ZQ, Zhang L, Liang YC, Sun T, An CH et al (2013) Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals. Int J Adv Manuf Technol 68(9–12):1927–1936

    Google Scholar 

  67. Rodríguez CJC (2009) Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing. Kassel university press GmbH

  68. Kandráč L, Maňková I, Vrabel M (2013) Cutting edge preparation in machining processes, Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika 85([288], nr 2):149–159

    Google Scholar 

  69. Nalbant M, Altin A, Gokkaya H (2007) The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater Des 28(4):1334–1338

    Google Scholar 

  70. Hughes J, Sharman A, Ridgway K (2006) The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity. Proc Inst Mech Eng B J Eng Manuf 220(2):93–107

    Google Scholar 

  71. Kim KW, Lee WY, Sin HC (1999) A finite-element analysis of machining with the tool edge considered. J Mater Process Technol 86(1):45–55

    Google Scholar 

  72. Yang N, Zong W, Wu D, Li Z, Sun T (2017) A study of the ultra-precision truing method for flank face of round nose diamond cutting tool. J Manuf Process 30:124–132

    Google Scholar 

  73. Jasinevicius RG, Duduch JG, Montanari L, Pizani PS (2011) Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proc Inst Mech Eng B J Eng Manuf 226(3):445–458

    Google Scholar 

  74. Shaw MC (2005) Metal cutting principles, vol 2. Oxford University Press, New York

    Google Scholar 

  75. Faehnle O, Doetz M, Dambon O (2017) Analysis of critical process parameters of ductile mode grinding of brittle materials. Adv Opt Technol 6(5):349–358

    Google Scholar 

  76. Ikehara T, Tsuchiya T (2016) Crystal orientation-dependent fatigue characteristics in micrometer-sized single-crystal silicon. Microsyst Nanoeng 2

  77. van Houten F (2005) Philips man predicts death of light bulbs as LEDs win. The Inquirer

  78. Nina Turner MM, Dugar A, Palma MJ, Rau S, Santiago L, Kim S-K. Worldwide semiconductor 2015–2019 Forecast [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=254548

  79. Worldwide, E. O. The correct material for infrared (IR) applications [Online]

  80. Tosi JL, Khajurivala KM. Common infrared optical materials and coatings: a guide to properties, performance and applications [Online]. [Online]. Available: https://www.photonics.com/a25495/Common_Infrared_Optical_Materials_and_Coatings_A

  81. Saayman M. Materials for infrared optics, OPTI 521 Tutorial [Online]. [Online]. Available: https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Saayman-521-Tutorial.pdf

  82. High transmission silicon (HiTranTM) for infrared, TOPSIL, Ed., ed, 2013

  83. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102

    Google Scholar 

  84. Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann Manuf Technol 61(1):131–134

    Google Scholar 

  85. Dumas D, Fendler M, Berger F, Cloix B, Pornin C, Baier N et al (2012) Infrared camera based on a curved retina. Opt Lett 37(4):653–655

    Google Scholar 

  86. Fang Z, Zhao CZ (2012) Recent progress in silicon photonics: a review. ISRN Optics

  87. Suleski TJ, Davies MA, Dutterer BS (2012) Diamond machining of freeform infrared optics. Opt Fabr Test OW2D:4

    Google Scholar 

  88. Kobaru Y, Kondo E, Iwamoto R (2012) Ultra-precision cutting of single crystal silicon using diamond tool with large top corner radius. Key Eng Mater:81–86

  89. Wang M, Wang B, Zheng Y (2015) Weakening of the anisotropy of surface roughness in ultra-precision turning of single-crystal silicon. Chin J Aeronaut 28(4):1273–1280

    Google Scholar 

  90. Azami S, Kudo H, Mizumoto Y, Tanabe T, Yan J, Kakinuma Y (2015) Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride. Precis Eng 40:172–181

    Google Scholar 

  91. Weck M, Fischer S (1999) Manufacturing of microstructured surfaces using ultraprecision turning, milling and shaping. In: Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology, 420–423

  92. (2014) High purity silicon for optical applications. In: Optical silicon Whitepaper, ed. Lattice Materials, Bozeman

  93. A short excursion into crystallography [Online] [Online]. Available: http://www.neutroninterferometry.com/research-overview/interferometry/a-short-excursion-into-crystallography

  94. Ayomoh M, Abou-El-Hossein K (2015) Surface finish in ultra-precision diamond turning of single-crystal silicon. Optifab 2015:96331I

    Google Scholar 

  95. Goel S, Luo XC, Agrawal A, Reuben RL (Jan 2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164

    Google Scholar 

  96. Wan Y, Cheng K, Liu Z, Ye H (2013) An investigation on machinability assessment of difficult-to-cut materials based on radar charts. Proc Inst Mech Eng B J Eng Manuf 227(12):1916–1920

    Google Scholar 

  97. Davim J (2014) P, Machinability of advanced materials. John Wiley & Sons

  98. To, S. S, Wang VH, Lee WB (2018) Machinability of single crystals in diamond turning. In: Materials characterisation and mechanism of micro-cutting in ultra-precision diamond turning. Springer, pp 43–69

  99. Senapati AK, brata Mohanty S (2014) A review on the effect of process parameters on different output parameters during machining of several materials. Int J Eng Sci Res Technol 3(3)

  100. Zhu Z, S. To, Xiao G, Ehmann KF, Zhang G (2016) Rotary spatial vibration-assisted diamond cutting of brittle materials. Precis Eng 44:211–219

    Google Scholar 

  101. Arif M, Rahman M, San WY (2012) A study on the effect of tool-edge radius on critical machining characteristics in ultra-precision milling of tungsten carbide. Int J Adv Manuf Technol 67(5–8):1257–1265

    Google Scholar 

  102. Arif M, Xinquan Z, Rahman M, Kumar S (2013) A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int J Mach Tools Manuf 64:114–122

    Google Scholar 

  103. Neo WK, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63(5):465–480

    Google Scholar 

  104. Mir A, Luo X, Sun J (2016) The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon. Wear 364:233–243

    Google Scholar 

  105. Patel MT, Deshpande VA (2014) Optimization of machining parameters for turning different alloy steels using CNC. Int J Innov Res Sci Eng Technol 3(2)

  106. Rigatti AMY, de Assis CLF, Coelho RT, Jasinevicius RG, Rodrigues AR (2013) Computational method for calculation of the specific cutting energy. In: International Congress of Mechanical Engineering, pp 2710–2715

  107. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113(2):184–189

    Google Scholar 

  108. Fang F, Liu B, Xu Z (2015) Nanometric cutting in a scanning electron microscope. Precis Eng 41:145–152

    Google Scholar 

  109. Wu X, Li L, He N, Yao C, Zhao M (2016) Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng 45:359–364

    Google Scholar 

  110. Zhang G, Guo C (2015) Modeling of cutting force distribution on tool edge in turning process. Procedia Manuf 1:454–465

    Google Scholar 

  111. Cai MB, Li XP, Rahman M, Tay AAO (2007) Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon. Int J Mach Tools Manuf 47(3–4):562–569

    Google Scholar 

  112. Zhang L, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211(1):44–53

    Google Scholar 

  113. Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957

    Google Scholar 

  114. Puttick KE, Rudman MR, Smith KJ, Franks A, Lindsey K (1870) Single-point diamond machining of glasses. Proc R Soc Lond A Math Phys Sci 1989(426)

  115. Marsh ER, Sommer EJ, Deakyne TRS, Kim GA, Simonson JA (Apr 2010) Detection of orientation-dependent, single-crystal diamond tool edge wear using cutting force sensors, while spin-turning silicon. Precis Eng 34(2):253–258

    Google Scholar 

  116. Mabrouki T, Courbon C, Zhang Y, Rech J, Nélias D, Asad M et al (2016) Some insights on the modelling of chip formation and its morphology during metal cutting operations. C R Mec 344(4):335–354

    Google Scholar 

  117. Jain L, Bajpai R, Basu R, Misra DS, Samajdar I (2017) Delamination/rupture of polycrystalline diamond film: defining role of shear anisotropy. Cryst Growth Des 17(4):1514–1523

    Google Scholar 

  118. Blake, P. N. and R. O. Scattergood, Ductile-regime turning of germanium and silicon, 1989;

    Google Scholar 

  119. Blackley W, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng 13(2):95–103

    Google Scholar 

  120. Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22(9-10):703–707

    Google Scholar 

  121. Morris JC, Callahan DL (Nov 1994) Origins of microplasticity in low-load scratching of silicon. J Mater Res 9(11):2907–2913

    Google Scholar 

  122. Tauhiduzzaman M, Veldhuis SC (2014) Effect of material microstructure and tool geometry on surface generation in single point diamond turning. Precis Eng 38(3):481–491

    Google Scholar 

  123. Zong W, Cao Z, He C, Sun T (2015) Critical undeformed chip thickness of brittle materials in single point diamond turning. Int J Adv Manuf Technol 81(5–8):975–984

    Google Scholar 

  124. Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195(1–3):204–211

    Google Scholar 

  125. Lucca D, Seo Y, Rhorer R (1994) Energy dissipation and tool-workpiece contact in ultra-precision machining. Tribol Trans 37(3):651–655

    Google Scholar 

  126. Liu K (2002) ductile cutting for rapid prototyping of tungsten carbide tools, a thesis for a doctorate. National University of Singapore, Singapore

    Google Scholar 

  127. Lucca D, Seo Y, Rhorer R, Donaldson R (1994) Aspects of surface generation in orthogonal ultraprecision machining. CIRP Ann Manuf Technol 43(1):43–46

    Google Scholar 

  128. Yan J, Zhao H, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol 24(7):075018

    Google Scholar 

  129. M’saoubi R, Chandrasekaran H (2004) Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Int J Mach Tools Manuf 44(2–3):213–224

    Google Scholar 

  130. Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81

    Google Scholar 

  131. Venkatachalam S, Li X, Liang SY (2009) Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. J Mater Process Technol 209(7):3306–3319

    Google Scholar 

  132. Arefin S, Li X, Cai M, Rahman M, Liu K, Tay A (2007) The effect of the cutting edge radius on a machined surface in the nanoscale ductile mode cutting of silicon wafer. Proc Inst Mech Eng B J Eng Manuf 221(2):213–220

    Google Scholar 

  133. Akash A, Aghara V. Tool geometry & it’s signature [Online] [Online]. Available: https://www.slideshare.net/akashambaliya/tool-geometry-its-signature

  134. Nakasuji T, Kodera S, Hara S, Matsunaga H, Ikawa N, Shimada S (1990) Diamond turning of brittle materials for optical components. CIRP Ann Manuf Technol 39(1):89–92

    Google Scholar 

  135. Komanduri R, Chandrasekaran N, Raff LM (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219(1):84–97

    Google Scholar 

  136. Komanduri R, Chandrasekaran N, Raff LM (Jul 1999) Some aspects of machining with negative-rake tools simulating grinding: a molecular dynamics simulation approach. Philos Mag B 79(7):955–968

    Google Scholar 

  137. Shibata T, Fujii S, Makino E, Ikeda M (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18(2):129–137

    Google Scholar 

  138. Yan J, Syoji K, Kuriyagawa T (1999) Effects of cutting edge geometry on brittle-ductile transition in silicon machining. In: Proceedings of the 9th international conference on precision engineering (ICPE), Osaka, Japan, pp 92–7

  139. Patten JA, Gao W (2001) Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis Eng 25(2):165–167

    Google Scholar 

  140. Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478

    Google Scholar 

  141. Liu K, Li XP, Rahman M, Neo KS, Liu XD (2006) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32(7–8):631–637

    Google Scholar 

  142. Taufeeque H (2016) Mechanical properties of nanomaterials: a review. Int J Adv Res Innov Ideas Educ 2(4):1131–1138

    Google Scholar 

  143. Lee BJ, Ko WS, Kim HK, Kim EH (Dec 2010) The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad 34(4):510–522

    Google Scholar 

  144. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Google Scholar 

  145. Han X, Hu Y, Yu S (2009) Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method. Appl Phys A 95(3):899–905

    Google Scholar 

  146. Zhang L, Zhao H, Ma Z, Huang H, Shi C, Zhang W (2012) A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation. AIP Adv 2(4):899

    Google Scholar 

  147. Safont Camprubí, G., Mechanical properties at nano-level, 2010;

    Google Scholar 

  148. Mimbo C (2008) Study of nanoscale ductile mode cutting of silicon using molecular dynamics simulation, PhD Thesis, Mechanical Engineering, National University of Singapore

  149. Pei Q, Lu C, Lee H, Zhang Y (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4(5):444

    Google Scholar 

  150. Zhang G, Guo J, Ming W, Huang Y, Shao X, Zhang Z (2014) Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl Surf Sci 290:359–367

    Google Scholar 

  151. Dai H, Chen G (2017) A molecular dynamics investigation into the mechanisms of material removal and subsurface damage of nanoscale high speed laser-assisted machining. Mol Simul 43(1):42–51

    MathSciNet  Google Scholar 

  152. Sun X, Chen S, Cheng K, Huo D, Chu W (2006) Multiscale simulation on nanometric cutting of single crystal copper. Proc Inst Mech Eng B J Eng Manuf 220(7):1217–1222

    Google Scholar 

  153. Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci Eng 130(5):051016

    Google Scholar 

  154. Oluwajobi AO (2012) Nanomachining technology development, Doctoral dissertation, University of Huddersfield

  155. Goel S (2013) An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials. Heriot-Watt University

  156. Promyoo R, El-Mounayri H, Yang X (2010) Molecular dynamics simulation of nanometric cutting. Mach Sci Technol 14(4):423–439

    Google Scholar 

  157. Raabe D (1998) Computational materials science: the simulation of materials microstructures and properties. Wiley-VCH

  158. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier

  159. LeSar R (2013) Introduction to computational materials science: fundamentals to applications. Cambridge University Press

  160. Brenner D (2000) The art and science of an analytic potential. Phys Status Solidi B 217(1):23–40

    Google Scholar 

  161. Oluwajobi AO, Chen X (2011) The effect of depth of cut on the molecular dynamics (MD) simulation of multi-pass nanometric machining. In: Automation and Computing (ICAC), 2011 17th International Conference on, pp 40–45

  162. De Chiffre L, Kunzmann H, Peggs G, Lucca D (2003) Surfaces in precision engineering, microengineering and nanotechnology. CIRP Ann Manuf Technol 52(2):561–577

    Google Scholar 

  163. Han X, Hu Y-Z, Yu S (2008) Molecular dynamics analysis micro-mechanism of ductile machining single crystal silicon by means of nanometric cutting technology. Eur Phys J Appl Phys 42(3):255–262

    Google Scholar 

  164. Oluwajobi AO, Chen X (2010) The effect of interatomic potentials on nanometric abrasive machining. Chinese Automation and Computing Society in the UK

  165. Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. CIRP Ann Manuf Technol 40(1):551–554

    Google Scholar 

  166. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566

    Google Scholar 

  167. Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Interatomic potential for silicon defects and disordered phases. Phys Rev B 58(5):2539

    Google Scholar 

  168. Wang Y, Shi J, Ji C (2014) A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl Phys A 115(4):1263–1279

    Google Scholar 

  169. Li H-P, Zhang R-Q (2012) Vacancy-defect–induced diminution of thermal conductivity in silicene. EPL (Europhys Lett) 99(3):36001

    Google Scholar 

  170. Li H, Xu R, Bi Z, Shen X, Han K (2017) Melting properties of medium-sized silicon nanoclusters: a molecular dynamics study. J Electron Mater 46(7):3826–3830

    Google Scholar 

  171. Balamane H, Halicioglu T, Tiller WA (1992) Comparative study of silicon empirical interatomic potentials. Phys Rev B 46(4):2250–2279

    Google Scholar 

  172. Zhang J, Hong Y, Tong Z, Xiao Z, Bao H, Yue Y (2015) Molecular dynamics study of interfacial thermal transport between silicene and substrates. Phys Chem Chem Phys 17(37):23704–23710

    Google Scholar 

  173. Li H-P, Zhang R-Q (2014) Anomalous effect of hydrogenation on phonon thermal conductivity in thin silicon nanowires. EPL (Europhys Lett) 105(5):56003

    Google Scholar 

  174. Li X-P, Chen G, Allen P, Broughton J (1988) Energy and vibrational spectrum of the Si (111)(7× 7) surface from empirical potentials. Phys Rev B 38(5):3331

    Google Scholar 

  175. Porter LJ, Yip S, Yamaguchi M, Kaburaki H, Tang M (1997) Empirical bond-order potential description of thermodynamic properties of crystalline silicon. J Appl Phys 81(1):96–106

    Google Scholar 

  176. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991

    Google Scholar 

  177. Tersoff J (1988) Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B 38(14):9902

    Google Scholar 

  178. Ishimaru M, Yoshida K, Motooka T (1996) Application of empirical interatomic potentials to liquid Si. Phys Rev B 53(11):7176

    Google Scholar 

  179. Kelires PC, Tersoff J (1988) Glassy quasithermal distribution of local geometries and defects in quenched amorphous silicon. Phys Rev Lett 61(5):562

    Google Scholar 

  180. Nordlund K, Keinonen J, Mattila T (1996) Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys Rev Lett 77(4):699

    Google Scholar 

  181. Pastewka L, Klemenz A, Gumbsch P, Moseler M (2013) Screened empirical bond-order potentials for Si-C. Phys Rev B 87(20):205410

    Google Scholar 

  182. Dai H, Li S, Chen G (2018) Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation. Nucl Instrum Methods Phys Res, Sect B 414:61–67

    Google Scholar 

  183. Tersoff J (1990) Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 41(5):3248

    Google Scholar 

  184. Tersoff J (1990) Carbon defects and defect reactions in silicon. Phys Rev Lett 64(15):1757

    Google Scholar 

  185. Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349

    Google Scholar 

  186. Bocchetti V, Diep HT, Enriquez H, Oughaddou H, Kara A (2014) Thermal stability of standalone silicene sheet. J Phys Conf Ser:012008

  187. Yamaguchi K, Itagaki K (2002) Measurement of high temperature heat content of silicon by drop calorimetry. J Therm Anal Calorim 69(3):1059–1066

    Google Scholar 

  188. Fang K-C, Weng C-I (2005) An investigation into the melting of silicon nanoclusters using molecular dynamics simulations. Nanotechnology 16(2):250

    Google Scholar 

  189. Agrawal PM, Raff LM, Komanduri R (2005) Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters. Phys Rev B 72(12):125206

    Google Scholar 

  190. Dozhdikov V, Basharin AY, Levashov P (2012) Two-phase simulation of the crystalline silicon melting line at pressures from–1 to 3 GPa. J Chem Phys 137(5):054502

    Google Scholar 

  191. Li S, Qi W (2015) Unification of two different melting mechanisms of nanovoids. J Phys Chem C 119(12):6843–6851

    Google Scholar 

  192. Bai X-M, Li M (2006) Nucleation and melting from nanovoids. Nano Lett 6(10):2284–2289

    Google Scholar 

  193. Goel S (2014) The current understanding on the diamond machining of silicon carbide. J Phys D Appl Phys 47(24)

  194. Goel S, Stukowski A, Luo X, Agrawal A, Reuben RL (2013) Anisotropy of single-crystal 3C–SiC during nanometric cutting. Model Simul Mater Sci Eng 21(6):065004

    Google Scholar 

  195. Ohira T, Inamuro T, Adachi T (1994) Molecular dynamics simulation of amorphous silicon with Tersoff potential. Sol Energy Mater Sol Cells 34(1):565–570

    Google Scholar 

  196. Wang Y, Shi J (2013) Effects of water molecules on tribological behavior and property measurements in nano-indentation processes-a numerical analysis. Nanoscale Res Lett 8(1):389

    Google Scholar 

  197. Moura CS, Amaral L (2005) Molecular dynamics simulation of silicon nanostructures. Nucl Instrum Methods Phys Res, Sect B 228(1–4):37–40

    Google Scholar 

  198. Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56(6):632

    Google Scholar 

  199. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262

    Google Scholar 

  200. Dai H, Chen G, Zhou C, Fang Q, Fei X (2017) A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation. Appl Surf Sci 393:405–416

    Google Scholar 

  201. Dai H, Chen G, Fang Q, Yin J (2016) The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation. Appl Phys A 122(9):804

    Google Scholar 

  202. Dai H, Chen G, Li S, Fang Q, Hu B (2017) Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation. RSC Adv 7(25):15596–15612

    Google Scholar 

  203. Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281

    Google Scholar 

  204. Chavoshi SZ, Goel S, Luo X (2016) Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J Manuf Process 23:201–210

    Google Scholar 

  205. Chavoshi SZ, Goel S, Luo X (2015) Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Model Simul Mater Sci Eng 24(1):015002

    Google Scholar 

  206. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211

    Google Scholar 

  207. Zare Chavoshi S, Luo X (2006) Molecular dynamics simulation investigation of hot nanometric cutting of single crystal silicon. In: 16th euspen International Conference, pp 249–250

  208. Goel S, Stukowski A, Kovalchenko A, Cross G (2016) Self-healing of cracks during ductile regime machining of silicon: insights from molecular dynamics simulation. In: euspen’s 16th International Conference & Exhibition, University of Nottingham, UK

  209. Kumagai T, Izumi S, Hara S, Sakai S (2007) Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput Mater Sci 39(2):457–464

    Google Scholar 

  210. Pastewka L, Pou P, Pérez R, Gumbsch P, Moseler M (2008) Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys Rev B 78(16):161402

    Google Scholar 

  211. Baskes M (1987) Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Phys Rev Lett 59(23):2666

    Google Scholar 

  212. Plimpton SJ, Thompson AP (2012) Computational aspects of many-body potentials. MRS Bull 37(5):513–521

    Google Scholar 

  213. Drautz R, Pettifor D (2006) Valence-dependent analytic bond-order potential for transition metals. Phys Rev B 74(17):174117

    Google Scholar 

  214. Baskes M (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5):2727

    Google Scholar 

  215. Foiles S, Baskes M, Daw MS (1986) Embedded-atom-method functions for the fcc metals cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983

    Google Scholar 

  216. Lee B-J, Baskes M (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62(13):8564

    Google Scholar 

  217. Lee B-J, Baskes MI, Kim H, Koo Cho Y (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64(18)

  218. Lee B-J, Shim J-H, Baskes M (2003) Semiempirical atomic potentials for the fcc metals cu, ag, au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68(14):144112

    Google Scholar 

  219. Kim Y-M, Lee B-J, Baskes M (2006) Modified embedded-atom method interatomic potentials for Ti and Zr. Phys Rev B 74(1):014101

    Google Scholar 

  220. Kim Y-M, Kim NJ, Lee B-J (2009) Atomistic modeling of pure Mg and Mg–Al systems. Calphad 33(4):650–657

    Google Scholar 

  221. Kim Y-M, Shin Y-H, Lee B-J (2009) Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Mater 57(2):474–482

    Google Scholar 

  222. Lee B-J, Lee JW (2005) A modified embedded atom method interatomic potential for carbon. Calphad 29(1):7–16

    Google Scholar 

  223. Lee B-J (2007) A modified embedded atom method interatomic potential for silicon. Calphad 31(1):95–104

    Google Scholar 

  224. Kim EH, Shin Y-H, Lee B-J (2008) A modified embedded-atom method interatomic potential for germanium. Calphad 32(1):34–42

    Google Scholar 

  225. Ciccotti G, Ferrario M, Schuette C (2014) Molecular dynamics simulation. Entropy 16:233

    MathSciNet  Google Scholar 

  226. Verners O, van Duin AC (2015) Comparative molecular dynamics study of fcc-Ni nanoplate stress corrosion in water. Surf Sci 633:94–101

    Google Scholar 

  227. Yue D-C, Ma T-B, Hu Y-Z, Yeon J, van Duin AC, Wang H et al (2015) Tribochemical mechanism of amorphous silica asperities in aqueous environment: a reactive molecular dynamics study. Langmuir 31(4):1429–1436

    Google Scholar 

  228. Gao G, Mikulski PT, Harrison JA (2002) Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J Am Chem Soc 124(24):7202–7209

    Google Scholar 

  229. Bucholz EW, Phillpot SR, Sinnott SB (2012) Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput Mater Sci 54:91–96

    Google Scholar 

  230. Lawn BR, Evans A, Marshall D (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63(9–10):574–581

    Google Scholar 

  231. Cardarelli F (2008) Materials handbook: a concise desktop reference. Springer Science & Business Media

  232. Zhang P, Zhao H, Zhang L, Shi C, Huang H (2014) A study on material removal caused by phase transformation of monocrystalline silicon during nanocutting process via molecular dynamics simulation. J Comput Theor Nanosci 11(1):291–296

    Google Scholar 

  233. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45(15):1681–1686

    Google Scholar 

  234. Noreyan A, Amar J (2008) Molecular dynamics simulations of nanoscratching of 3C SiC. Wear 265(7):956–962

    Google Scholar 

  235. Belak J (1994) Nanotribology: modeling atoms when surfaces collide. Lawrence Livermore National Lab., Livermore

    Google Scholar 

  236. Chandrasekaran N, Khajavi AN, Raff L, Komanduri R (1998) A new method for molecular dynamics simulation of nanometric cutting. Philos Mag B 77(1):7–26

    Google Scholar 

  237. Komanduri R, Chandrasekaran N, Raff L (2000) Molecular dynamics simulation of atomic-scale friction. Phys Rev B 61(20):14007

    Google Scholar 

  238. Guo Y, Liang Y, Chen M, Bai Q, Lu L (2010) Molecular dynamics simulations of thermal effects in nanometric cutting process. SCIENCE CHINA Technol Sci 53(3):870–874

    MATH  Google Scholar 

  239. Cai M, Li X, Rahman M (2007) Molecular dynamics modelling and simulation of nanoscale ductile cutting of silicon. Int J Comput Appl Technol 28(1):2–8

    Google Scholar 

  240. Zhu B, Zhao D, Zhao H, Guan J, Hou P, Wang S et al (2017) A study on the surface quality and brittle–ductile transition during the elliptical vibration-assisted nanocutting process on monocrystalline silicon via molecular dynamic simulations. RSC Adv 7(7):4179–4189

    Google Scholar 

  241. Zhu B, Zhao H, Zhao D, Zhang P, Yang Y, Han L et al (2016) Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation. AIP Adv 6(3):035015

    Google Scholar 

  242. Zhang Z, Chen P, Qin F (2017) Molecular dynamics simulation on subsurface damage layer during nano grinding process of silicon wafer. In: Electronic Packaging Technology (ICEPT), 2017 18th International Conference on, pp 487–490

  243. Zhang ZG, Fang FZ, Hu XT, Sun CK (2009) Molecular dynamics study on various nanometric cutting boundary conditions. J Vac Sci Technol B Microelectron Nanometer Struct 27(3):1355

    Google Scholar 

  244. Chavoshi SZ, Luo X (2016) An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comput Mater Sci 113:1–10

    Google Scholar 

  245. Tong Z, Liang Y, Jiang X, Luo X (2014) An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools. Appl Surf Sci 290:458–465

    Google Scholar 

  246. Jang J-I, Lance M, Wen S, Tsui TY, Pharr G (2005) Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater 53(6):1759–1770

    Google Scholar 

  247. Mehrez H, Ciraci S (1997) Yielding and fracture mechanisms of nanowires. Phys Rev B 56(19):12632

    Google Scholar 

  248. Pei Q, Lu C, Lee H (2007) Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Sci 41(2):177–185

    Google Scholar 

  249. Goel S, Luo X, Reuben RL, Pen H (2012) Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 284-285:65–72

    Google Scholar 

  250. Shi J, Ji C, Wang Y, Wang SH-M (2014) Tool/chip interfacial friction analysis in atomistic machining of polycrystalline coppers. J Micro Nano-Manuf 2(4):041001

    Google Scholar 

  251. Tong Z, Liang Y, Yang X, Luo X (2014) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools. Int J Adv Manuf Technol 74(9–12):1709–1718

    Google Scholar 

  252. Zhu P-Z, Hu Y-Z, Ma T-B, Wang H (2011) Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol Lett 41(1):41–46

    Google Scholar 

  253. Zhang J, Sun T, Yan Y, Liang Y, Dong S (2008) Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl Surf Sci 254(15):4774–4779

    Google Scholar 

  254. Zhang L, Zhao H, Yang Y, Huang H, Ma Z, Shao M (2014) Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations. Appl Phys A 116(1):141–150

    Google Scholar 

  255. Liu B, Qiu X (2009) How to compute the atomic stress objectively? J Comput Theor Nanosci 6(5):1081–1089

    Google Scholar 

  256. Tsai D (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70(3):1375–1382

    Google Scholar 

  257. Zimmerman JA, WebbIII EB, Hoyt J, Jones RE, Klein P, Bammann DJ (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12(4):S319

    Google Scholar 

  258. Dommelen L (2003) Physical interpretation of the virial stress, URL http://eng.fsu.edu/∼dommelen/papers/virial/index.pdf

  259. Subramaniyan, A. K. and C. Sun, equivalence of virial stress to continuum Cauchy stress, 2007

    Google Scholar 

  260. Zhou M (2003) A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc R Soc Lond A Math Phys Eng Sci:2347–2392

  261. Diao J, Gall K, Dunn ML, Zimmerman JA (2006) Atomistic simulations of the yielding of gold nanowires. Acta Mater 54(3):643–653

    Google Scholar 

  262. Olsson PA, Melin S, Persson C (2007) Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams. Phys Rev B 76(22):224112

    Google Scholar 

  263. Xu R, Liu B (2009) Investigation on applicability of various stress definitions in atomistic simulation. Acta Mechanica Solida Sinica 22(6):644–649

    Google Scholar 

  264. Subramaniyan AK, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45(14):4340–4346

    MATH  Google Scholar 

  265. Wang Z, Chen J, Wang G, Bai Q, Liang Y (2017) Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett 12(1):300

    Google Scholar 

  266. Han X, Lin B, Yu S, Wang S (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129(1):105–108

    Google Scholar 

  267. Chavoshi SZ, Luo X (2016) Molecular dynamics simulation study of deformation mechanisms in 3C–SiC during nanometric cutting at elevated temperatures. Mater Sci Eng A 654:400–417

    Google Scholar 

  268. Cross GL (2011) Silicon nanoparticles: isolation leads to change. Nat Nanotechnol 6(8):467–468

    Google Scholar 

  269. Yan J, Asami T, Harada H, Kuriyagawa T (Oct 2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386

    Google Scholar 

  270. Morris JC, Callahan DL, Kulik J, Patten JA, Scattergood RO (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020

    Google Scholar 

  271. Gerbig YB, Michaels CA, Cook RF (2015) In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films. J Mater Res 30(3):390–406

    Google Scholar 

  272. Zhao S, Hahn E, Kad B, Remington B, Wehrenberg C, Bringa E et al (2016) Amorphization and nanocrystallization of silicon under shock compression. Acta Mater 103:519–533

    Google Scholar 

  273. Fang Q, Zhang L (2013) Prediction of the threshold load of dislocation emission in silicon during nanoscratching. Acta Mater 61(14):5469–5476

    Google Scholar 

  274. Huang H, Yan J (2015) New insights into phase transformations in single crystal silicon by controlled cyclic nanoindentation. Scr Mater 102:35–38

    Google Scholar 

  275. Wang Y, Ruffell S, Sears K, Knights AP, Bradby J, Williams J (2010) Electrical properties of Si-XII and Si-III formed by nanoindentation. Optoelectronic and Microelectronic Materials and Devices (COMMAD), 2010 Conference on:105–106

  276. Gogotsi Y, Zhou G, Ku S-S, Cetinkunt S (2001) Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond Sci Technol 16(5):345

    Google Scholar 

  277. Kim D, Oh S (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9):2259

    Google Scholar 

  278. Lin Y-H, Chen T-C (2008) A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation. Appl Phys A 92(3):571–578

    Google Scholar 

  279. Cheong W, Zhang L (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11(3):173

    Google Scholar 

  280. Zhao S, Kad B, Hahn E, Remington B, Wehrenberg C, Huntington C et al (2015) Pressure and shear-induced amorphization of silicon. Extreme Mech Lett 5:74–80

    Google Scholar 

  281. Kovalchenko A, Milman YV (2014) On the cracks self-healing mechanism at ductile mode cutting of silicon. Tribol Int 80:166–171

    Google Scholar 

  282. Mizushima K, Yip S, Kaxiras E (1994) Ideal crystal stability and pressure-induced phase transition in silicon. Phys Rev B 50(20):14952

    Google Scholar 

  283. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012

    MathSciNet  Google Scholar 

  284. Wang J, Zhang X, Fang F (2016) Molecular dynamics study on nanometric cutting of ion implanted silicon. Comput Mater Sci 117:240–250

    Google Scholar 

  285. Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192-193:607–612

    Google Scholar 

  286. Komanduri R, Raff L (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc Inst Mech Eng B J Eng Manuf:1639–1672

  287. Born DK, Goodman W (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25(4):247–257

    Google Scholar 

  288. Yan J, Zhang Z, Kuriyagawa T (2010) Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann Manuf Technol 59(1):109–112

    Google Scholar 

  289. Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262(3–4):340–349

    Google Scholar 

  290. Sreejith PS (2005) Machining force studies on ductile machining of silicon nitride. J Mater Process Technol 169(3):414–417

    Google Scholar 

  291. Chen JX, Liang YC, Wang LQ, Hu XL (2011) Atomics simulation of cutting velocity dependency in AFM-based nanomachining process. Appl Mech Mater 80-81:448–451

    Google Scholar 

  292. Kumbera TG, Cherukuri HP, Patten JA, Brand CJ, Marusich TD (2001) Numerical simulations of ductile machining of silicon nitride with a cutting tool of defined geometry. Mach Sci Technol 5(3):341–352

    Google Scholar 

  293. El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: part IV. Residual stresses in the machined workpiece. J Mater Process Technol 152(1):23–34

    Google Scholar 

  294. Zareena A, Veldhuis S (2012) Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J Mater Process Technol 212(3):560–570

    Google Scholar 

  295. Khamel S, Ouelaa N, Bouacha K (2012) Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool. J Mech Sci Technol 26(11):3605–3616

    Google Scholar 

  296. Sharma, K., D. Mahto, and S. Sen, In metal turning, effect of various parameters on cutting tool: a review, 2016;

    Google Scholar 

  297. Xiao G, S. To, Zhang G (2015) Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide. Int J Mach Tools Manuf 88:214–222

    Google Scholar 

  298. Jenei IZ (2012) Scanning electron microscopy (SEM) analysis of tribofilms enhanced by fullerene-like nanoparticles. Department of Physics, Stockholm University

  299. Bolat M (2013) Machining of polycarbonate for optical applications. Middle East Technical University

  300. Zhang Z, Yan J, Kuriyagawa T (2011) Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide. Int J Adv Manuf Technol 57(1–4):117–125

    Google Scholar 

  301. Li X, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259(7–12):1207–1214

    Google Scholar 

  302. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18(1):4–19

    Google Scholar 

  303. Yan J, Zhang Z, Kuriyagawa T (2009) Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tools Manuf 49(5):366–374

    Google Scholar 

  304. Goel S, Luo X, Comley P, Reuben RL, Cox A (2013) Brittle–ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf 65:15–21

    Google Scholar 

  305. Zhang S, S. To, Zhang G (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88(1–4):613–641

    Google Scholar 

  306. Field J (2012) The mechanical and strength properties of diamond. Rep Prog Phys 75(12):126505

    Google Scholar 

  307. Yamaguchi T, Higuchi M, Shimada S, Tanaka H, Obata K (2006) Scientific screening of raw diamond for an ultraprecision cutting tool with high durability. CIRP Ann Manuf Technol 55(1):71–74

    Google Scholar 

  308. Khurshudov AG, Kato K, Koide H (1997) Wear of the AFM diamond tip sliding against silicon. Wear 203:22–27

    Google Scholar 

  309. Wilks J (1980) Performance of diamonds as cutting tools for precision machining. Precis Eng 2(2):57–72

    MathSciNet  Google Scholar 

  310. O’Connor BP, Marsh ER, Couey JA (2005) On the effect of crystallographic orientation on ductile material removal in silicon. Precis Eng 29(1):124–132

    Google Scholar 

  311. Oomen J, Eisses J (1992) Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis Eng 14(4):206–218

    Google Scholar 

  312. Fung K, Tang C, Cheung C (2017) Molecular dynamics analysis of the effect of surface flaws of diamond tools on tool wear in nanometric cutting. Comput Mater Sci 133:60–70

    Google Scholar 

  313. Jackson MJ, Ahmed W (2009) Machining brittle materials using nanostructured diamond tools. In: Jackson MJ, Morrel JS (eds) Machining with nanomaterials. Springer, London, pp 169–198

    Google Scholar 

  314. Trent E (1977) Metal cutting. Butterworths, London

    Google Scholar 

  315. Cai MB, Li XP, Rahman M (2007) Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear 263(7–12):1459–1466

    Google Scholar 

  316. Chacham H, Kleinman L (2000) Instabilities in diamond under high shear stress. Phys Rev Lett 85(23):4904

    Google Scholar 

  317. Wang J, Li Y, Liu X, Lv M (2016) Effect of cutting temperature on hardness of SiC and diamond in the nano-cutting process of monocrystalline silicon. Adv Opt Des Manuf Technol Astron Telescopes Instrum 101541J

  318. Cai M, Li X, Rahman M (2007) Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon. J Manuf Sci Eng 129(2):281–286

    Google Scholar 

  319. Luo X, Goel S, Reuben RL (2012) A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. J Eur Ceram Soc 32(12):3423–3434

    Google Scholar 

  320. Goel S, Luo X, Reuben RL (2012) Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput Mater Sci 51(1):402–408

    Google Scholar 

  321. Singh K, Vaishya RO, Singh H, Mishra V, Ramagopal S (2013) Investigation of tool life & surface roughness during single point diamond turning of silicon. Int J Sci Res 2(6):265–267

    Google Scholar 

  322. Olufayo O, Abou-El-Hossein K (2013) Preliminary investigation of surface finish of a contact lens polymer in ultra-high precision diamond turning. In: Robotics and Mechatronics Conference (RobMech), 2013 6th, pp 117–122

  323. Sun J, Fang L, Han J, Han Y, Chen H, Sun K (2014) Phase transformations of mono-crystal silicon induced by two-body and three-body abrasion in nanoscale. Comput Mater Sci 82:140–150

    Google Scholar 

  324. Gilman JJ (1995) Mechanism of shear-induced metallization. Czechoslov J Phys 45(11):913–919

    Google Scholar 

  325. Wu Y, Huang H, Zou J, Zhang L, Dell J (2010) Nanoscratch-induced phase transformation of monocrystalline Si. Scr Mater 63(8):847–850

    Google Scholar 

  326. Zykova-Timan T, Ceresoli D, Tosatti E (2007) Peak effect versus skating in high-temperature nanofriction. Nat Mater 6(3):230

    Google Scholar 

  327. Inamura T, Shimada S, Takezawa N, Nakahara N (1997) Brittle/ductile transition phenomena observed in computer simulations of machining defect-free monocrystalline silicon. CIRP Ann Manuf Technol 46(1):31–34

    Google Scholar 

  328. Lai M, Zhang X, Fang F, Wang Y, Feng M, Tian W (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8(1):13

    Google Scholar 

  329. Lai M, Zhang X, Fang F (2017) Crystal orientation effect on the subsurface deformation of monocrystalline germanium in nanometric cutting. Nanoscale Res Lett 12(1):296

    Google Scholar 

  330. Mylvaganam K, Zhang L (2011) Nanotwinning in monocrystalline silicon upon nanoscratching. Scr Mater 65(3):214–216

    Google Scholar 

  331. Minor A, Lilleodden E, Jin M, Stach E, Chrzan D, Morris J (2005) Room temperature dislocation plasticity in silicon. Philos Mag 85(2–3):323–330

    Google Scholar 

  332. Chavoshi SZ, Xu S, Luo X (2016) Dislocation-mediated plasticity in silicon during nanometric cutting: a molecular dynamics simulation study. Mater Sci Semicond Process 51:60–70

    Google Scholar 

  333. Pethicai J, Hutchings R, Oliver WC (1983) Hardness measurement at penetration depths as small as 20 nm. Philos Mag A 48(4):593–606

    Google Scholar 

  334. Wu H (2012) Fundamental investigations of cutting of silicon for photovoltaic applications. Georgia Institute of Technology

  335. Tanaka H, Shimada S, Anthony L (2007) Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation. CIRP Ann Manuf Technol 56(1):53–56

    Google Scholar 

  336. Zhang L, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31(8):425–433

    Google Scholar 

  337. Boercker D, Belak J, Stowers I, Donaldson R, Siekhaus W (1992) Simulation of diamond turning of silicon surfaces. In: Proceedings of the American Society for Precision Engineering Annual Conference (Grenelefe, FL, October 18–23). ASPE, PO Box, pp 27605–0826

  338. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184(1–3):407–410

    Google Scholar 

  339. Rashid WB, Goel S, Luo X, Ritchie JM (2013) The development of a surface defect machining method for hard turning processes. Wear 302(1):1124–1135

    Google Scholar 

  340. Stephenson DJ (2006) Surface integrity control during the precision machining of brittle materials. Adv Technol Mater Mater Process J 8(1):13

    Google Scholar 

  341. Zhao H, Zhang P, Shi C, Liu C, Han L, Cheng H et al (2014) Molecular dynamics simulation of the crystal orientation and temperature influences in the hardness on monocrystalline silicon. J Nanomater 2014

  342. Hsieh J-Y, Ju S-P, Li S-H, Hwang C-C (2004) Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip. Phys Rev B 70(19):195424

    Google Scholar 

  343. Liu C-L, Fang T-H, Lin J-F (2007) Atomistic simulations of hard and soft films under nanoindentation. Mater Sci Eng A 452:135–141

    Google Scholar 

  344. Fang T-H, Weng C-I, Chang J-G (2003) Molecular dynamics analysis of temperature effects on nanoindentation measurement. Mater Sci Eng A 357(1):7–12

    Google Scholar 

  345. Chavoshi SZ, Xu S, Goel S (2017) Addressing the discrepancy of finding the equilibrium melting point of silicon using molecular dynamics simulations. Proc R Soc A 20170084

  346. Chavoshi SZ, Xichun L (2006) Nanoscale elastic recovery of silicon while cutting at different temperatures: an MD simulation-based study. In: Advances in Manufacturing Technology XXX: Proceedings of the 14th International Conference on Manufacturing Research, Incorporating the 31st National Conference on Manufacturing Research, September 6–8, 2016, Loughborough University, UK, p 131

  347. To, S, Lee W, Chan C (1997) Ultraprecision diamond turning of aluminium single crystals. J Mater Process Technol 63(1–3):157–162

    Google Scholar 

  348. Pastewka L (2010) Multi-scale simulations of carbon nanomaterials: for supercapacitors, actuators, and low-friction coatings, Freiburg (Breisgau), Univ., Diss

  349. Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236

    Google Scholar 

  350. Pastewka L, Moser S, Gumbsch P, Moseler M (Jan 2011) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10(1):34–38

    Google Scholar 

  351. Wang Y, Suzuki N, Shamoto E, Zhao Q (2011) Investigation of tool wear suppression in ultraprecision diamond machining of die steel. Precis Eng 35(4):677–685

    Google Scholar 

  352. Jasinevicius R, Duduch JG, Pizani P (2008) The influence of crystallographic orientation on the generation of multiple structural phases generation in silicon by cyclic microindentation. Mater Lett 62(6):812–815

    Google Scholar 

  353. Gerbig Y, Stranick S, Morris D, Vaudin M, Cook R (2009) Effect of crystallographic orientation on phase transformations during indentation of silicon. J Mater Res 24(03):1172–1183

    Google Scholar 

  354. Wang M, Wang W, Lu Z (2012) Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study. Int J Adv Manuf Technol 60(5–8):473–485

    Google Scholar 

  355. Li J, Fang Q, Zhang L, Liu Y (2015) Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl Surf Sci 324:464–474

    Google Scholar 

  356. Gupta MC, Ruoff AL (1980) Static compression of silicon in the [100] and in the [111] directions. J Appl Phys 51(2):1072–1075

    Google Scholar 

  357. Hung N, Fu Y (2000) Effect of crystalline orientation in the ductile-regime machining of silicon. Int J Adv Manuf Technol 16(12):871–876

    Google Scholar 

  358. Ikawa N, Shimada S, Tsuwa H (1982) Microfracture of diamond as fine tool material. CIRP Ann Manuf Technol 31(1):71–74

    Google Scholar 

  359. Hurt H, Decker D (1984) Tribological considerations of the diamond single-point tool. In: 28th Annual Technical Symposium, pp 126–131

Download references

Acknowledgements

This is to acknowledge the intervention of Research Capacity Development of Nelson Mandela University (RCD) for the providing necessary fund to enable the completion of this research (RCD NMU No: s215102134). Worthy of mentioning is the South African Center for High Performance Computing for the use of Material Studio software. We are particularly grateful to Dr. Krishna K. Govender for his tireless attention when called upon. My appreciation also goes to Prof. Khaled Habou-El-Hossien for the guidance and support in carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukman N. Abdulkadir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkadir, L.N., Abou-El-Hossein, K., Jumare, A.I. et al. Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining. Int J Adv Manuf Technol 98, 317–371 (2018). https://doi.org/10.1007/s00170-018-2041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2041-7

Keywords

Navigation