Skip to main content
Log in

Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy—SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named “Virgin with her Child” (XIV century), whose origins are mysterious and not properly documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bulletin of the metropolitan Museum of Art, A German statue of the thirteenth century, http://www.metmuseum.org/pubs/bulletins/1/pdf/3255622.pdf.bannered.pdf. Accessed on 20 June 2013

  2. B.D. Fahlman, Materials Chemistry, 2nd edn. (Springer, New York, 2011), pp. 1–747

    Book  Google Scholar 

  3. C. Ibarra-Castanedo, S. Sfarra, D. Ambrosini, D. Paoletti, A. Bendada, X. Maldague, QIRT J. 5, 1768–6733 (2008)

    Article  Google Scholar 

  4. H. Rottenkolber, W. Juptner, Holographic interferometry in the next decade, in Laser Interferometry: Quantitative Analysis of Interferograms, ed. by R.J. Pryputniewicz. Proc. SPIE, vol. 1162, 3rd edn. (SPIE, San Diego, 1989), pp. 2–15

    Google Scholar 

  5. K. Şerifaki, H. Böke, Ş. Yalçin, B. Ipekoğlu, Mater. Charact. 60, 303–311 (2009)

    Article  Google Scholar 

  6. M. Brunetti, E.L. De Capua, N. Macchioni, S. Monachello, Ann. Sci. For. 58, 607–613 (2001)

    Article  Google Scholar 

  7. J.R.J. van Asperen de Boer, Stud. Conserv. 11, 45–46 (1966)

    Google Scholar 

  8. R.W. Arndt, Infrared Phys. Technol. 53, 246–253 (2010)

    Article  ADS  Google Scholar 

  9. P. Carelli, D. Paoletti, G. Schirripa Spagnolo, A. D’Altorio, Opt. Eng. 30, 1294–1298 (1991)

    Article  ADS  Google Scholar 

  10. S. Amadesi, A. D’Altorio, D. Paoletti, Appl. Opt. 21, 1889–1890 (1982)

    Article  ADS  Google Scholar 

  11. N. Carmona, I. Ortega-Feliu, B. Gómez-Tubío, M.A. Villegas, Mater. Charact. 61, 257–267 (2010)

    Article  Google Scholar 

  12. J.F. Asmus, Mater. Charact. 29, 119–128 (1992)

    Article  Google Scholar 

  13. S. Sfarra, C. Ibarra-Castanedo, F. Lambiase, D. Paoletti, A. Di Ilio, X. Maldague, Meas. Sci. Technol. 23, 115601 (2012)

    Article  ADS  Google Scholar 

  14. Encyclopaedia Britannica, www.britannica.com/EBchecked/topic/101070/cedar. Accessed on 02 January 2013

  15. S. Montorio, Lo Zodiaco di Maria, Zodiaco di Maria, ovvero Le dodici province del Regno di Napoli, come tanti segni, illustrate da questo sole per mezzo delle sue prodigiosissime immagini, che in esse quasi tante stelle risplendono (Carbonara, Naples, 1715), pp. 1–606

    Google Scholar 

  16. C. Brandi, Teoria del restauro (Einaudi, Turin, 1977), pp. 1–154

    Google Scholar 

  17. J.C. Rich, Sculpture in Wood (Dover, New York, 1992), pp. 1–175

    Google Scholar 

  18. C.C. Carstenson, The Craft and Creation of Wood Sculpture (Dover, New York, 1981), pp. 1–180

    Google Scholar 

  19. S. Bordini, Materia e immagine—Fonti sulle tecniche della pittura (Leonardo & De Luca Eds., Rome, 1991), pp. 1–269

    Google Scholar 

  20. E. Antonucci, Roio e il suo Santuario (Eco Ed., Teramo, 1986), pp. 1–117

    Google Scholar 

  21. F. Murri, Roio e il suo Santuario (La Fonte Ed, Pescara, 1989), pp. 1–159

    Google Scholar 

  22. A. Signorini, La Diocesi di Aquila descritta ed illustrata—Vol. 1 (Stabilimento Tipografico Grossi, L’Aquila, 1868), pp. 1–101

    Google Scholar 

  23. G. Manuelli, Prima visita pastorale 1931–1934 (L’Aquila, 1934), pp. 1–37

  24. M. Paglia, A. Trionfi, S. Maria della Croce in Roio—Poemetto storico religioso in ottava rima (Officine Grafiche Vecchioni, L’Aquila, 1929), pp. 1–61

    Google Scholar 

  25. O. Luciani, Madonne in mostra al Castello Piccolomini di Celano (L’Aquila), http://www.oresteluciani.eu/Madonne%20in%20mostra%20al%20Castello%20Piccolomini%20di%20Celano.pdf. Accessed on 03 January 2013

  26. C.M. Vest, Holographic Interferometry (Wiley, New York, 1979), pp. 1–480

    Google Scholar 

  27. J.J. Zelenka, J.R. Varner, Appl. Opt. 7, 2107–2110 (1968)

    Article  ADS  Google Scholar 

  28. K.J. Gasvik, K.J. Svik, Optical Metrology (Wiley, London, 2003), pp. 1–374

    Google Scholar 

  29. P. Demattia, V. Fossati-Bellani, Opt. Commun. 26, 17–21 (1978)

    Article  ADS  Google Scholar 

  30. C.A. Sciammarella, Opt. Eng. 21, 447–457 (1982)

    Article  Google Scholar 

  31. N. Abramson, The Making and Evaluation of Holograms (Academic Press, London, 1982), pp. 1–326

    Google Scholar 

  32. L. Meitner, Z. Phys. 9, 131–144 (1922)

    Article  ADS  Google Scholar 

  33. M.C. Miller, X-Ray Fluorescence, www.fas.org/sgp/othergov/doe/lanl/lib-www/la-pubs/00326405.pdf. Accessed on 01 December 2012

  34. M. Mantler, M. Schreiner, X-Ray Spectrom. 29, 3–17 (2000)

    Article  Google Scholar 

  35. R. Cesareo, A. Brunetti, S. Ridolfi, X-Ray Spectrom. 37, 309–316 (2008)

    Article  Google Scholar 

  36. R. Jenkins, X-ray Fluorescence Spectrometry, 2nd edn. (Wiley, New York, 1999), pp. 1–207

    Book  Google Scholar 

  37. R. Jenkins, R.W. Gould, D. Gedcke, Quantitative X-ray Spectrometry (Dekker, New York, 1981), pp. 1–586

    Google Scholar 

  38. S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N.P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, X. Maldague, Insight 54, 21–27 (2012)

    Article  Google Scholar 

  39. R.B. Dinwiddie, S.W. Dean, Case study of IR reflectivity to detect and document the underdrawing of a 19th century oil painting, in Thermosense XVIII. Proceedings SPIE, vol. 6205, Florida (2006)

    Google Scholar 

  40. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res. 43, 1–15 (2010)

    Article  Google Scholar 

  41. E. Walmsley, C. Metzger, J.K. Delaney, C. Fletcher, Stud. Conserv. 39, 217–231 (1994)

    Article  Google Scholar 

  42. J.R.J. van Asperen, Stud. Conserv. 14, 96–118 (1969)

    Article  Google Scholar 

  43. G. Wecksung, R. Evans, J. Walker, M. Ainsworth, J. Brealey, G.W. Carriveau, Assembly of infra-red reflectograms by digital processing using a portable data collecting system, in ICOM Committee for Conservation, 8th Triennial Meeting, Sydney (1987)

    Google Scholar 

  44. J.K. Delaney, Examination of the visibility of underdrawing lines as a function of wavelength, in ICOM Committee for Conservation, 10th Triennial Meeting, Washington (1993)

    Google Scholar 

  45. D. Bertani, M. Cetica, P. Poggi, G. Puggioni, E. Buzzegoli, D. Kunzelman, S. Cecchi, Stud. Conserv. 35, 113–116 (1990)

    Article  Google Scholar 

  46. J. Coddington, The use of infra-red vidicon and image digitizing software in examining 20th century works of art. AIC Paintings Specialty Group Postprints. Albuquerque (1991)

  47. R.W. Astheimer, Handbook of Infrared Radiation Measurement (Barnes Engineering Company, Stamford, 1983), pp. 1–113

    Google Scholar 

  48. C. Weiner, Improved acquisition of underdrawings in oil-paintings using IR-Reflectography. Final Report SIMG-503. Rochester: Rochester Institute of Technology (1998)

  49. X.P.V. Maldague, Theory and Practice of Infrared Technology for Non-destructive Testing (Wiley, New York, 1991), pp. 1–704

    Google Scholar 

  50. D.L. Balageas, J.C. Krapez, P. Cielo, J. Appl. Phys. 59, 348–457 (1986)

    Article  ADS  Google Scholar 

  51. V. Vavilov, T. Kauppinen, E. Grinzato, Res. Nondestruct. Eval. 9, 181–200 (1997)

    Article  ADS  Google Scholar 

  52. Basic signal processing, Chap. 9, www.cs.princeton.edu/courses/archive/fall00/cs426/papers/hanrahan95.pdf. Accessed on 04 July 2012

  53. X.P.V. Maldague, S. Marinetti, J. Appl. Phys. 79, 2694–2698 (1996)

    Article  ADS  Google Scholar 

  54. C. Ibarra-Castanedo, X. Maldague, QIRT J. 1, 47–70 (2004)

    Article  Google Scholar 

  55. F.J. Madruga, C. Ibarra-Castanedo, O.M. Conde, J.M. López-Higuera, X. Maldague, Nondestruct. Test. Eval. Int. 43, 661–666 (2010)

    Google Scholar 

  56. A. Chanda, D.D. Majumder, Digital Image Processing and Analysis, 2nd edn. (PHI Learning Pvt., Ltd, New Delhi, 2011), pp. 1–471

    Google Scholar 

  57. R. Mayer, The Artist’s Handbook of Materials and Techniques, 5th edn. (Viking Adult, New York, 1991), pp. 1–784

    Google Scholar 

  58. F. Brunello, Cennini Cennino: Il libro dell’arte (Neri Pozza, Vicenza, 1993), pp. 1–207

    Google Scholar 

  59. G. Piva, L’arte del restauro—Il restauro dei dipinti nel sistema antico e moderno, 3rd edn. (Hoepli, Milano, 1988), pp. 1–442

    Google Scholar 

  60. L. Bux, G. Morabito, F. Prosperetti, F. De Chirico, P. Martino, S. De Fiores et al., La Madonna dei poveri di Seminara—Il culto, la storia dell’arte, il restauro (Rubbettino, Soveria Mannelli, 2011), pp. 1–225

    Google Scholar 

  61. Module 2: Basic XRF concepts, http://www.clu-in.org/conf/tio/xrf_080408/prez/XRF_02pdf.pdf. Accessed on 23 June 2013

  62. A. Giumlia-Mair, C. Albertson, G. Boschian, G. Giachi, P. Iacomussi, P. Pallecchi, G. Rossi, A.N. Shugar, S. Stock, Mater. Technol. 25(5), 245–261 (2010)

    Google Scholar 

  63. H. Kahn, E.S. Mano, M.M.M.L. Tassinari, J. Miner. Mater. Charact. Eng. 1(1), 1–9 (2002)

    Google Scholar 

  64. H.J. Tiziani, Opt. Quantum Electron. 21, 253–282 (1989)

    Article  Google Scholar 

  65. S. Sfarra, C. Ibarra-Castanedo, D. Paoletti, X. Maldague, Mater. Eval. 5, 561–570 (2013)

    Google Scholar 

  66. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd edn. (Prentice Hall, Reading, 2008), pp. 1–954

    Google Scholar 

  67. J.C. Russ, The Image Processing Handbook, 6th edn. (CRC Press, Boca Raton, 2007), pp. 1–885

    MATH  Google Scholar 

  68. H. Zhou, J. Wu, J. Zhang, Digital Image Processing: Part II (eBook Publishing, Bookboon, 2010), pp. 1–91

    Google Scholar 

  69. C. Ibarra-Castanedo, S. Sfarra, D. Ambrosini, D. Paoletti, A. Bendada, X. Maldague, QIRT J. 7, 85–114 (2010)

    Article  Google Scholar 

  70. I. Smith, S. Vasic, Mech. Mater. 35, 803–815 (2003)

    Article  Google Scholar 

  71. C. Daffara, D. Ambrosini, L. Pezzati, D. Paoletti, Opt. Express 20, 14746–14753 (2012)

    Article  ADS  Google Scholar 

  72. C.H. Chen, Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization (World Scientific Publishing, Singapore, 2007), pp. 1–665

    Book  Google Scholar 

  73. R.E. Green Jr., Int. Appl. Mech. 38, 253–259 (2002)

    Article  ADS  Google Scholar 

  74. F. Casali, Archeom. Műh. 3(1), 24–28 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eng. L. Marchetti—Assistant Chief of Civil Defense with special responsibility for the cultural heritage after the 2009 earthquake (L’Aquila, Italy)—for granting permission to carry out experiments on the “Virgin with her Child” statue, as well as Dr. Lorenzo Arrizza and Dr. Maria Giammatteo of the “Centro di Microscopie” of the University of L’Aquila (Italy) for their kind support during the SEM-EDS and stereomicroscopic image acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Sfarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfarra, S., Ibarra-Castanedo, C., Ridolfi, S. et al. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl. Phys. A 115, 1041–1056 (2014). https://doi.org/10.1007/s00339-013-7939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7939-1

Keywords

Navigation