Skip to main content
Log in

Guided modes in asymmetric graphene waveguides

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An asymmetric quantum well in graphene can act as a slab waveguide for electron waves in a manner analogous to the electromagnetic waves in dielectrics. Guided modes and the probability current density are analyzed in the graphene electron waveguide induced by asymmetric electrostatic potential. The modes in an asymmetric graphene waveguide include guided modes, “cover modes”, “substrate modes” and “radiation modes”. The conditions for a guided mode are quantified. It is found that the fundamental mode is absent when both the Klein tunneling and classical motion are present. The confinement of electrons for lower order mode is stronger than for higher order mode. We hope that these characteristics in asymmetric graphene waveguide can provide potential applications in graphene-based waveguide devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.K. Gaylord, E.N. Glytsis, K.F. Brennan, J. Appl. Phys. 66, 1842 (1989)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. C.W. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (London) 438, 197 (2005)

    Article  ADS  Google Scholar 

  5. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature (London) 438, 201 (2005)

    Article  ADS  Google Scholar 

  6. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  7. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  8. B. Huard, J.A. Sulpizio, N. Stander, K. Todd, B. Yang, D. Goldhaber-Gordon, Phys. Rev. Lett. 98, 236803 (2007)

    Article  ADS  Google Scholar 

  9. G. Liu, J.J. Velasco, W. Bao, C.N. Lau, Appl. Phys. Lett. 92, 203103 (2008)

    Article  ADS  Google Scholar 

  10. J. Lee, L. Tao, Y. Hao, R.S. Ruoff, D. Akinwande, Appl. Phys. Lett. 100, 152104 (2012)

    Article  ADS  Google Scholar 

  11. O.M. Nayfeh, A.G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A.L.M. Reddy, P.M. Ajayan, Appl. Phys. Lett. 102, 103115 (2013)

    Article  ADS  Google Scholar 

  12. H. Medina, Y.C. Lin, D. Obergfell, P.-W. Chiu, Adv. Funct. Mater. 21, 2687 (2011)

    Article  Google Scholar 

  13. J.R. Williams, T. Low, M.S. Lundstrom, C.M. Marcus, Nat. Nanotechnol. 6, 222 (2011)

    Article  ADS  Google Scholar 

  14. V.V. Cheianov, V. Fal’ko, B.L. Altshuler, Science 315, 1252 (2007)

    Article  ADS  Google Scholar 

  15. C.W.J. Beenakker, R.A. Sepkhanov, A.R. Akhmerov, J. Tworzyd, Phys. Rev. Lett. 102, 146804 (2009)

    Article  ADS  Google Scholar 

  16. S. Ghosh, M. Sharma, J. Phys. Condens. Matter 21, 292204 (2009)

    Article  Google Scholar 

  17. S. Ghosh, M. Sharma, J. Phys. Condens. Matter 23, 055501 (2011)

    Article  ADS  Google Scholar 

  18. F.M. Zhang, Y. He, X. Chen, Appl. Phys. Lett. 94, 212105 (2009)

    Article  ADS  Google Scholar 

  19. C.E.P. Villegas, M.R.S. Tavares, Appl. Phys. Lett. 96, 186101 (2010)

    Article  ADS  Google Scholar 

  20. Y. He, F.M. Zhang, X. Chen, Appl. Phys. Lett. 96, 186102 (2010)

    Article  ADS  Google Scholar 

  21. N. Myoung, G. Ihm, S.J. Lee, Phys. Rev. B 83, 113407 (2011)

    Article  ADS  Google Scholar 

  22. Y. He, W.D. Huang, Y.F. Yang, C.F. Li, Appl. Phys. A 106, 41 (2012)

    Article  ADS  Google Scholar 

  23. W.D. Huang, Y. He, Y.F. Yang, C.F. Li, J. Appl. Phys. 111, 053712 (2012)

    Article  ADS  Google Scholar 

  24. J.M. Pereira Jr., V. Mlinar, F.M. Peeters, P. Vasilopoulos, Phys. Rev. B 74, 045424 (2006)

    Article  ADS  Google Scholar 

  25. T.Ya. Tudorovskiy, A.V. Chaplik, JETP Lett. 84, 619 (2006)

    Article  ADS  Google Scholar 

  26. P. Peng, P. Zhang, J.K. Liu, Z.Z. Cao, G.Q. Li, Commun. Theor. Phys. 58, 765 (2012)

    Article  Google Scholar 

  27. N. Myoung, G. Ihm, S.J. Lee, Phys. Rev. B 83, 113407 (2011)

    Article  ADS  Google Scholar 

  28. L. Zhao, S.F. Yelin, Phys. Rev. B 81, 115441 (2010)

    Article  ADS  Google Scholar 

  29. R.R. Hartmann, N.J. Robinson, M.E. Portnoi, Phys. Rev. B 81, 245431 (2010)

    Article  ADS  Google Scholar 

  30. D.M. Elton, M. Levitin, I. Polterovich. arXiv:1303.2185

  31. R.R. Hartmann, M.E. Portnoi. arXiv:1305.4652

  32. D.A. Stone, C.A. Dowing, Phys. Rev. B 86, 075464 (2012)

    Article  ADS  Google Scholar 

  33. L. Zhao, W.H. Duan, arXiv:1103.5375v1

  34. C.E.P. Villegas, M.R.S. Tavares, Solid State Commun. 150, 1350 (2010)

    Article  ADS  Google Scholar 

  35. H. Li, L. Wang, Z. Lan, Y. Zheng, Phys. Rev. B 79, 155429 (2009)

    Article  ADS  Google Scholar 

  36. J.G. Pedersen, T. Gunst, T. Markussen, T.G. Pedersen, Phys. Rev. B 86, 245410 (2012)

    Article  ADS  Google Scholar 

  37. J.H. Yuan, Z. Cheng, Q.J. Zeng, J.P. Zhang, J.J. Zhang, J. Appl. Phys. 110, 103706 (2011)

    Article  ADS  Google Scholar 

  38. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  39. A. Mhamdi, E.B. Salema, S. Jaziri, Solid State Commun. (2013). doi:10.1016/j.ssc.2013.04.026

    Google Scholar 

  40. P.E. Allain, J.N. Fuchs, Eur. Phys. J. B 83, 301 (2011)

    Article  ADS  Google Scholar 

  41. D.W. Wilson, E.N. Glytsis, T.K. Gaylord, IEEE J. Quantum Electron. 29, 1364 (1993)

    Article  ADS  Google Scholar 

  42. Y. He, Z.Q. Cao, Q.S. Shen, Opt. Commun. 245, 125 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11204170, 61108010), and the Science and Technology Committee of Shanghai Municipality (Grant No. 11ZR1412300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Xu, Y., Yang, Y. et al. Guided modes in asymmetric graphene waveguides. Appl. Phys. A 115, 895–902 (2014). https://doi.org/10.1007/s00339-013-7885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7885-y

Keywords

Navigation