Skip to main content
Log in

LA-ICP-MS and EDS characterization of electrode/electrolyte interfaces in IT-SOFC materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) is used for the determination of elemental spatial distribution in ceramic multi-layer systems such as those found in intermediate-temperature solid oxide fuel cells (IT-SOFCs). Because layer sintering occurs at high temperature (usually well over 1000 °C), there may be mutual diffusion of ions from one layer to another, with dramatic consequences on cell performances. In this work, two model materials have been used to test LA-ICP-MS: La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM), one of the most promising electrolytes for IT-SOFCs, and La0.8Sr0.2MnO3 (LSM), a highly representative perovskite material, which are amply used to design electrode materials. A two-layer system screen printed onto an LSM pellet (LSM–LSGM–LSM pellet) was successively sintered at a typical processing temperature, i.e. 1300 °C, for a short time (1 h). Elemental spatial distribution was determined by line profile analyses carried out on fracture surfaces; for comparison SEM-EDS line profiles were tested on the same surface. LA-ICP-MS line profile analysis evidenced that, notwithstanding the relatively low sintering temperature and short firing time (1 h per sintering), manganese cation diffusion into LSGM is relatively abundant, in agreement with previous literature reports and present EDS results. While line scan EDS analyses are not as conclusive for Ga and Mg diffusion, LA-ICP-MS shows that both ions diffuse across both interfaces, and Ga diffuses even over very long distances into the LSM pellet; on the contrary, only trace amounts of Mg can be found far from the LSGM/LSM interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.B. Stambouli, Renew. Sustain. Energy Rev. 15, 4507 (2011)

    Article  Google Scholar 

  2. A. Tarancón, Energies 2, 1130 (2009)

    Article  Google Scholar 

  3. E.D. Wachsman, K.T. Lee, Science 334, 935 (2011)

    Article  ADS  Google Scholar 

  4. Z. Shao, W. Zhou, Z. Zhu, Prog. Mater. Sci. 57, 804 (2012)

    Article  Google Scholar 

  5. M. Feng, J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994)

    Google Scholar 

  6. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)

    Article  Google Scholar 

  7. K.Q. Huang, R. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2581 (1998)

    Article  Google Scholar 

  8. K.Q. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565 (1998)

    Article  Google Scholar 

  9. K.Q. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2576 (1998)

    Article  Google Scholar 

  10. D. Marrero-López, J.C. Ruiz-Morales, J. Peña-Martínez, M.C. Martín-Sedeño, J.R. Ramos-Barrado, Solid State Ion. 186, 44 (2011)

    Article  Google Scholar 

  11. R. Pelosato, C. Cristiani, G. Dotelli, S. Latorrata, R. Ruffo, L. Zampori, J. Power Sources 195, 8116 (2010)

    Article  Google Scholar 

  12. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008)

    Article  Google Scholar 

  13. P. Datta, P. Majewski, F. Aldinger, J. Eur. Ceram. Soc. 29, 1463 (2009)

    Article  Google Scholar 

  14. D. Lee, J.-H. Han, Y. Chun, R.-H. Song, D.R. Shin, J. Power Sources 166, 35 (2007)

    Article  Google Scholar 

  15. K.Q. Huang, J.B. Goodenough, J. Alloys Compd. 303, 454 (2000)

    Article  Google Scholar 

  16. D. Marrero-López, M.C. Martín-Sedeño, J. Peña-Martínez, J.C. Ruiz-Morales, P. Núñez-Coello, J.R. Ramos-Barrado, J. Am. Ceram. Soc. 94, 1031 (2011)

    Article  Google Scholar 

  17. N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, J. Mater. Sci. 45, 3109 (2010)

    Article  ADS  Google Scholar 

  18. X.G. Zhang, S. Ohara, R. Maric, K. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miura, J. Power Sources 83, 170 (1999)

    Article  Google Scholar 

  19. C.M. Mari, R. Ruffo, G. Dotelli, I. Natali-Sora, R. Pelosato, Ionics 11, 29 (2005)

    Article  Google Scholar 

  20. J.-H. Lee, K.N. Kim, J.-W.S.J. Kim, B.-K. Kim, H.-W. Lee, J. Moon, J. Mater. Sci. 42, 1866 (2007)

    Article  ADS  Google Scholar 

  21. P. Datta, P. Majewski, F. Aldinger, Mater. Chem. Phys. 102, 125 (2007)

    Article  Google Scholar 

  22. S.P. Jiang, J. Mater. Sci. 43, 6799 (2008)

    Article  ADS  Google Scholar 

  23. K.Q. Huang, M. Feng, J.B. Goodenough, M. Schmerling, J. Electrochem. Soc. 143, 3630 (1996)

    Article  Google Scholar 

  24. R. Pelosato, I. Natali Sora, G. Dotelli, R. Ruffo, C.M. Mari, J. Eur. Ceram. Soc. 25, 2587 (2005)

    Article  Google Scholar 

  25. R. Pelosato, I. Natali Sora, V. Ferrari, G. Dotelli, C.M. Mari, Solid State Ion. 175, 87 (2004)

    Article  Google Scholar 

  26. G.C. Kostogloudis, C. Ftikos, A. Ahmad-Khanlou, A. Naoumidis, D. Stover, Solid State Ion. 134, 127 (2000)

    Article  Google Scholar 

  27. A. Naoumidis, A. Ahmad-Khanlou, Z. Samardzija, D. Kolar, Fresenius J. Anal. Chem. 365, 277 (1999)

    Article  Google Scholar 

  28. D.I. Bronin, B.L. Kuzin, I.Y. Yaroslavtsev, N.M. Bogdanovich, J. Solid State Electrochem. 10, 651 (2006)

    Article  Google Scholar 

  29. F. Zheng, Y. Chen, J. Mater. Sci. 43, 2058 (2008)

    Article  ADS  Google Scholar 

  30. W. Gong, S. Gopalan, U.B. Pal, J. Electroceram. 13, 653 (2004)

    Article  Google Scholar 

  31. K. Huang, J. Electrochem. Soc. 144, 3620 (1997)

    Article  Google Scholar 

  32. J.Y. Yi, G.M. Choi, J. Eur. Ceram. Soc. 24, 1359 (2004)

    Article  Google Scholar 

  33. J.Y. Yi, G.M. Choi, Solid State Ion. 175, 145 (2004)

    Article  Google Scholar 

  34. X. Xu, C. Cao, C. Xia, D. Peng, Ceram. Int. 35, 2213 (2009)

    Article  Google Scholar 

  35. C. Knöfel, H.-J. Wang, K.T.S. Thydén, M. Mogensen, Solid State Ion. 195, 36 (2011)

    Article  Google Scholar 

  36. V. Sadykov, G. Alikina, A. Lukashevich, V. Muzykantov, V. Usoltsev, A. Boronin, S. Koscheev, T. Krieger, A. Ishchenko, A. Smirnova, O. Bobrenok, N. Uvarov, Solid State Ion. 192, 540 (2011)

    Article  Google Scholar 

  37. J. Richter, P. Holtappels, T. Graule, T. Nakamura, L.J. Gauckler, Monatsh. Chem. 140, 985 (2009)

    Article  Google Scholar 

  38. M. Yang, M. Zhang, A. Yan, X. Yue, Z. Houa, Y. Dong, M. Cheng, Electrochem. Solid-State Lett. 11, B34 (2008)

    Article  Google Scholar 

  39. P.I. Cowin, C.T.G. Petit, R. Lan, J.T.S. Irvine, S.W. Tao, Adv. Energy Mater. 1, 314 (2011)

    Article  Google Scholar 

  40. M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Mater. Today 14, 534 (2011)

    Article  Google Scholar 

  41. A.L. Soldati, L. Baque, H. Troiani, C. Cotaro, A. Schreiber, A. Caneiro, A. Serquis, Int. J. Hydrog. Energy 36, 9180 (2011)

    Article  Google Scholar 

  42. S. Carter, A.S. Fisher, P.S. Goodall, M.W. Hinds, S. Lancaster, S. Shore, J. Anal. At. Spectrom. 25, 1808 (2010)

    Article  Google Scholar 

  43. J.A. Kilner, S.J. Skinner, H.H. Brongersma, J. Solid State Electrochem. 15, 861 (2011)

    Article  Google Scholar 

  44. J. Koch, D. Günther, Appl. Spectrosc. 65, 155 (2011)

    Article  ADS  Google Scholar 

  45. A. Nevin, G. Spoto, D. Anglos, Appl. Phys. A 106, 339 (2011)

    Article  ADS  Google Scholar 

  46. D. Miriello, I. Alfano, C. Miceli, S.A. Ruffolo, V. Pingitore, A. Bloise, D. Barca, C. Apollaro, G.M. Crisci, A. Oliva, M. Lezzerini, F. Chirico, N. Mari, C. Murat, Appl. Phys. A 106, 171 (2011)

    Article  ADS  Google Scholar 

  47. B. Wagner, E. Bulska, W. Sobucki, J. Cult. Herit. 9, 60 (2008)

    Article  Google Scholar 

  48. M. Gil, R. Green, M.L. Carvalho, A. Seruya, I. Queralt, A.E. Candeias, J. Mirão, Appl. Phys. A 96, 997 (2009)

    Article  ADS  Google Scholar 

  49. L. Dussubieux, L. van Zelst, Appl. Phys. A, Mater. Sci. Process. 79, 353 (2004)

    Article  ADS  Google Scholar 

  50. B. Giussani, D. Monticelli, L. Rampazzi, Anal. Chim. Acta 635, 6 (2009)

    Article  Google Scholar 

  51. Z. Pan, W. Wei, F. Li, J. Mater. Sci., Mater. Electron. 22, 1594 (2011)

    Article  Google Scholar 

  52. R. Dargel, F. Heinemeyer, M. Köntges, J. Vogt, C. Vogt, Microchim. Acta 165, 265 (2009)

    Article  Google Scholar 

  53. D. Bleiner, P. Gasser, Appl. Phys. A 79, 1019 (2004)

    Article  ADS  Google Scholar 

  54. A.V. Karasev, R. Inoue, Mater. Trans. 50, 341 (2009)

    Article  Google Scholar 

  55. C. Strubel, L. Meckel, R. Effenberger, Glass Sci. Technol. 72, 15 (1999)

    Google Scholar 

  56. R.E. Wolf, C. Thomas, A. Bohlke, Appl. Surf. Sci. 127, 299 (1998)

    Article  ADS  Google Scholar 

  57. J.S. Becker, U. Breuer, J. Westheide, A.I. Saprykin, H. Holzbrecher, H. Nickel, H.J. Dietze, Fresenius J. Anal. Chem. 355, 626 (1996)

    Google Scholar 

  58. J.S. Becker, J. Westheide, A.I. Saprykin, H. Holzbrecher, U. Breuer, H.J. Dietze, Mikrochim. Acta 125, 153 (1997)

    Article  Google Scholar 

  59. M.T. Colomer, J.A. Kilner, Solid State Ion. 182, 76 (2011)

    Article  Google Scholar 

  60. M. Holá, J. Kalvoda, H. Nováková, R. Škoda, V. Kanický, Appl. Surf. Sci. 257, 1932 (2011)

    Article  ADS  Google Scholar 

  61. M. Stanislowski, D.H. Peck, S.K. Woo, L. Singheiser, K. Hilpert, O. Schulz, M. Martin, Fuel Cells 6, 270 (2006)

    Article  Google Scholar 

  62. R. Polini, A. Pamio, E. Traversa, J. Eur. Ceram. Soc. 24, 1365 (2004)

    Article  Google Scholar 

  63. M. Rozumek, P. Majewski, F. Aldinger, J. Am. Ceram. Soc. 87, 656 (2004)

    Article  Google Scholar 

  64. R. Shannon, Acta Crystallogr. A, Found. Crystallogr. 32, 751 (1976)

    Article  ADS  Google Scholar 

  65. A. Manthiram, J.-H. Kim, Y.N. Kim, K.-T. Lee, J. Electroceram. 27, 93 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Dario Picenoni for technical support for SEM-EDS analyses and Dr. Massimo Tiepolo for help during LA-ICP-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dotelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotelli, G., Pelosato, R., Zampori, L. et al. LA-ICP-MS and EDS characterization of electrode/electrolyte interfaces in IT-SOFC materials. Appl. Phys. A 111, 887–896 (2013). https://doi.org/10.1007/s00339-012-7309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7309-4

Keywords

Navigation