Skip to main content
Log in

A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We invented a dual-curable transfer layer to enhance adhesion of the UV-curable nanoimprint resist to the substrate. Based on this transfer layer, we developed bilayer resist and trilayer resist UV-curable nanoimprint lithography processes, which were used for etching and lift-off processes, respectively. The dual-curable transfer layer combined at least two different types of reactive functions based on different polymerization mechanisms. It formed strong chemical bonds with both the underneath material and the nanoimprint resist layer in two curing steps. It helped improve the adhesion of the low surface energy resist film to the substrate substantially, and, more importantly, made high-resolution patterning much more reliable. Moreover, low aspect ratio imprinted patterns were amplified into high aspect ratio patterns through the transfer layer via a selective etching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 84, 5299–5301 (2004)

    Article  ADS  Google Scholar 

  2. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Screenivasan, J. Ekerdt, C.G. Willson, Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–389 (1999)

    Article  ADS  Google Scholar 

  3. J. Haisma, M. Verheijen, K. van den Heuvel, J. van den Berg, Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)

    Article  Google Scholar 

  4. J. Shaw, E. Babich, M. Hatzakis, J. Paraszczak, Polysiloxanes for optical lithography. Solid State Technol. 30, 83–89 (1987)

    Google Scholar 

  5. S.C. Johnson, T.C. Bailey, M.D. Dickey, B.J. Smith, E.K. Kim, A.T. Jamieson, N.A. Stacey, J.G. Ekerdt, C.G. Willson, D.P. Mancini, W.J. Dauksher, K.J. Nordquist, D.J. Resnick, Advances in step and flash imprint lithography. Proc. SPIE 5037, 197–202 (2003)

    Article  ADS  Google Scholar 

  6. H.X. Ge, W. Wu, Z.Y. Li, G.Y. Jung, D.L. Olynick, Y.F. Chen, J.A. Liddle, S.Y. Wang, R.S. Williams, Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 5, 179–182 (2005)

    Article  ADS  Google Scholar 

  7. C. Decker, K. Zahouily, A. Valet, Curing and photostabilization of thermoset and photoset acrylate polymers. Macromol. Mater. Eng. 286, 5–16 (2001)

    Article  Google Scholar 

  8. K. Doren, W. Freitag, D. Stoye, Water-Borne Coatings: The Environmentally-Friendly Alternative (Hanser, New York, 1994)

    Google Scholar 

  9. A. El-ghayoury, C. Boukaftane, B. de Ruiter, R. van der Linde, Dual-cure processes: towards deformable crosslinked coatings. Macromol. Symp. 187, 553–561 (2002)

    Article  Google Scholar 

  10. S. Peeters, In Overview of Dual-Cure and Hybrid-Cure Systems in Radiation Curing in Radiation Curing in Polymer Science and Technology, vol. III, ed. by J.P. Fouassier, J.F. Rabek (Elsevier Science, New York, 1993), pp. 177–218

    Google Scholar 

  11. K. Rainer, E. Beck, K. Menzel, Radiation-curable coating resins for outdoor use. Farbe Lack 105, 233–240 (1999)

    Google Scholar 

  12. W. Fischer, J. Weikard, Dual cure: new possibilities with radiation-curable coatings. Farbe Lack 107, 120–126 (2001)

    Google Scholar 

  13. J.F. Bohland, G.S. Calabrese, M.F. Cronin, D. Canistro, T.H. Fedynyshyn, J. Ferrari, A.A. Lamola, G.W. Orsula, E.K. Pavelchek, R. Sinta, J.W. Thackeray, A.K. Berry, L.E. Pogan Jr., M.P. de Grandpre, W.E. Feely, K.A. Graziano, R. Olsen, S. Thompson, M.R. Winkle, Some resists based on chemically-amplified crosslinking of phenolic polymers. J. Photopolym. Sci. Technol. 3, 355–373 (1990)

    Article  Google Scholar 

  14. D.R. Bauer, G.F. Budde, Crosslinking kinetics and network formation in organic coatings containing hexamethoxymethylmelamine. J. Appl. Polym. Sci. 28, 253–266 (1983)

    Article  Google Scholar 

  15. F.W. Billmeyer Jr., Textbook of Polymer Science, 3rd edn. (Wiley Interscience, New York, 1984)

    Google Scholar 

  16. E.W. Meijer, A model study for coatings containing hexamethoxymethylmelamine. J. Polym. Sci., A, Polym. Chem. 24, 2199–2208 (1986)

    Article  ADS  Google Scholar 

  17. Y.J. Park, D.H. Lim, H.J. Kim, D.S. Park, I.K. Sung, UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int. J. Adhes. Adhes. 29, 710–717 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Nature Science Foundation of China (Grant Nos. 10874072 and 91023014) and the National High Technology Research and Development Program of China (863 Program) (Grant No. 2007AA03Z334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixiong Ge or Wei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, D., Ye, L., Guo, X. et al. A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system. Appl. Phys. A 108, 1–6 (2012). https://doi.org/10.1007/s00339-012-6911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6911-9

Keywords

Navigation