Skip to main content
Log in

A novel, organic, UV-sensitive resist ideal for nanoimprint-, photo- and laser lithography in an air atmosphere

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A UV-sensitive resist capable of curing in an oxygen atmosphere using single wavelength LED light sources is a niche area many UVnanoimprint lithography resists are incapable of addressing. However, the novel negative tone resist, presently (2015) known as DELOKATIOBOND OM VE 110707 (Delo-Katiobond), from Delo Industrial Adhesives has been designed to be specifically compatible with such conditions within the 320–440 nm wavelength range. The authors acquired some of the resist and evaluated its photolithographic performance under such conditions. Several lithographic methods were evaluated, namely nanoimprint-, photo- and laser lithography. Under the step-and-flash nanoimprint test conditions the Delo-Katiobond outperformed commercial alternatives from AMO and Microresist Technology. Processing and development conditions for photo- and laser lithography are also presented. Different discrete wavelengths were used for curing the resist in these two separate lithography processes, 365 nm and 405 nm respectively. The laser-defined lines in Delo-Katiobond coatings were found to be a fraction of alternative resist Nano SU-8 from MicroChem. The functionality of the Delo-Katiobond resist is also evaluated here. It is demonstrated to be effective for a range of resist functions including metal lift-off, elastomeric polymer casting and as a mask for reactive ion etching of a variety of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996).

    Article  Google Scholar 

  2. L. J. Guo, J. Phys. D Appl. Phys. 37, 123 (2004).

    Article  Google Scholar 

  3. L. J. Guo, Adv. Mater. 19, 495 (2007).

    Article  Google Scholar 

  4. H. Schift, J. Vac. Sci. Technol. B 26, 458 (2008).

    Article  Google Scholar 

  5. A. I. M. Greer, K. Sunarine, A. Z. Khokhar, X. Li, D. A. J. Moran, and N. Gadegaard, PSS(a) 209, 1721 (2012).

    Google Scholar 

  6. A. I. M. Greer, K. Sunarine, A. Z. Khokhar, I. MacLaren, A. S. Brydone, D. A. J. Moran, and N. Gadegaard, Microelectron. Eng. 112, 67 (2013).

    Article  Google Scholar 

  7. S. Murthy, M. Falcon, S. Sreenivasan, and D. Dance, in P Soc. Photo-opt Ins., pp. 964–975 (2005).

    Google Scholar 

  8. S. Sreenivasan, C. G. Willson, N. E. Schumaker, and D. J. Resnick, in Proc. SPIE, 4688, 903–909 (2002).

    Article  Google Scholar 

  9. S. Park, G. Kim, K. Choi, and J. Lee, Microelectron. Eng. 87, 968 (2010).

    Article  Google Scholar 

  10. A. Z. Khokhar, A. Gaston, I. Obieta, and N. Gadegaard, Microelectron. Eng. 88, 3347 (2011).

    Article  Google Scholar 

  11. I. Vasiev, A. I. M. Greer, A. Z. Khokhar, J. Stromonth-Darling, K. E. Tanner, and N. Gadegaard, Microelectron. Eng. 108, 76 (2013).

    Article  Google Scholar 

  12. M. Svoboda, W. Schrott, Z. Slouka, M. Pribyl, and D. Šnita, Microelectron. Eng. 87, 1527 (2010).

    Article  Google Scholar 

  13. T.-K. Shih, C.-F. Chen, J.-R. Ho, and F.-T. Chuang, Microelectron. Eng. 83, 2499 (2006).

    Article  Google Scholar 

  14. K. MicroChem, http://www.microchem.com, (2014).

  15. M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, Nat. Mater. 6, 997 (2007).

    Article  Google Scholar 

  16. R. J. McMurray, N. Gadegaard, M. P. Tsimbouri, K. V. Burgess, L. E. McNamara, R. Tare, K. Murawski, E. Kingham, R. O. C. Oreffo, and M. J. Dalby, Nat. Mater. 10, 637 (2011).

    Article  Google Scholar 

  17. M. J. Dalby, N. Gadegaard, and R. O. Oreffo, Nat. Mater. 13, 558 (2014).

    Article  Google Scholar 

  18. R. Fader, H. Schmitt, M. Rommel, A. J. Bauer, L. Frey, R. Ji, M. Hornung, M. Brehm, and M. Vogler Microelectron. Eng. 98, 238 (2012).

    Article  Google Scholar 

  19. H. Schmitt, P. Duempelmann, R. Fader, M. Rommel, A. J. Bauer, L. Frey, M. Brehm, and A. Kraft, Microelectron. Eng. 98, 275 (2012).

    Article  Google Scholar 

  20. J. Kim, U. Plachetka, C. Moormann, and H. Kurz, Microelectron. Eng. 110, 403 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew I. M. Greer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greer, A.I.M., Gadegaard, N. A novel, organic, UV-sensitive resist ideal for nanoimprint-, photo- and laser lithography in an air atmosphere. Electron. Mater. Lett. 11, 544–551 (2015). https://doi.org/10.1007/s13391-015-4401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4401-x

Keywords

Navigation