Skip to main content
Log in

Fabrication of coaxial nanowire heterostructures: SiO x nanowires with conformal TiO2 coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silica nanowires, grown via the active oxidation of a silicon substrate, have been coated with TiO2 using two coating methods: solution-based deposition of Ti-alkoxides and atomic layer deposition. Analysis of as-deposited and annealed films shows that it is possible to produce stable conformal coatings of either the anatase or rutile phases of TiO2 on nanowires with diameters greater than 100 nm when annealed between 500–600°C and 800–900°C, respectively, with annealing at higher temperatures (1050°C) producing coatings with a highly facetted rutile morphology. The efficacy of the process is shown to depend on nanowire diameter, with nanowires having diameters less than about 100 nm fusing together during solution-based coating and decomposing during TiO2 atomic layer deposition. The use of a suitable buffer layer is shown to be an effective means of minimizing nanowire decomposition. Finally, annealing coated nanowires under active oxidation conditions (1100°C) is shown to be an effective technique for depositing additional conformal SiO x coatings, thereby providing a means of fabricating multi-layered coaxial nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Oregan, M. Gratzel, Nature 353(6346), 737 (1991)

    Article  ADS  Google Scholar 

  2. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95(3), 735 (1995)

    Article  Google Scholar 

  3. S.S. Tan, L. Zou, E. Hu, Catal. Today 115(1–4), 269 (2006)

    Article  Google Scholar 

  4. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009)

    Article  Google Scholar 

  5. C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. 33(3–5), 359 (2007)

    Article  Google Scholar 

  6. Q.N. Li, X.M. Wang, X.H. Lu, H.E. Tian, H. Jiang, G. Lv, D.D. Guo, C.H. Wu, B.A. Chen, Biomaterials 30(27), 4708 (2009)

    Article  Google Scholar 

  7. M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, Annu. Rev. Mater. Res. 35, 1 (2005)

    Article  ADS  Google Scholar 

  8. W.L. Kostedt, J. Drwiega, D.W. Mazyck, S.W. Lee, W. Sigmund, C.Y. Wu, P. Chadik, Environ. Sci. Technol. 39(20), 8052 (2005)

    Article  Google Scholar 

  9. J.W. Lee, M.R. Othman, Y. Eom, T.G. Lee, W.S. Kim, J. Kim, Microporous Mesoporous Mater. 116(1–3), 561 (2008)

    Article  Google Scholar 

  10. A. Shalav, T.H. Kim, R.G. Elliman, IEEE J. Sel. Top. Quantum Electron. 17(4), 785 (2011)

    Article  Google Scholar 

  11. T.H. Kim, A. Shalav, R.G. Elliman, J. Appl. Phys. 108(7), 076120 (2010)

    Google Scholar 

  12. P.K. Sekhar, A.R. Wilkinson, R.G. Elliman, T.H. Kim, S. Bhansali, J. Phys. Chem. C 112(51), 20109–20113 (2008)

    Article  Google Scholar 

  13. A. Shalav, T.H. Kim, R.G. Elliman, J. Appl. Phys. 107(4), 046101 (2010)

    Article  ADS  Google Scholar 

  14. H.W. Kim, S.H. Shim, M.H. Kong, H.H. Yang, Phys. Status Solidi A 205(8), 2002 (2008)

    Article  ADS  Google Scholar 

  15. A. Shalav, D.K. Venkatachalam, F. Reichardt, F. Fischer, R.G. Elliman, in MRS Fall Meeting, Boston, 2009, p. 1206-M16-05

  16. S.G. Seong, E.J. Kim, Y.S. Kim, K.E. Lee, S.H. Hahn, Appl. Surf. Sci. 256(1), 1 (2009)

    Article  ADS  Google Scholar 

  17. E. Biehl, U. Schubert, F. Kubel, New J. Chem. 25(8), 994 (2001)

    Article  Google Scholar 

  18. P. Vitanov, P. Stefanov, A. Harizanova, T. Ivanova, J. Phys. Conf. Ser. 113, 012036 (2008)

    Article  ADS  Google Scholar 

  19. G.N. Bokerman, (Madison, IN), J.P. Cannady, (Madison, IN), C.S. Kuivila, (LaGrange, KY): Silane products from reaction of solid silicon monoxide with organic halides. United States Patent, September 24, 5051247 (1991)

  20. H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U.P. Singh, N.C. Mishra, Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 83(4), 559 (2009)

    Google Scholar 

  21. J.Y. Kim, D.W. Kim, H.S. Jung, K.S. Hong, Jpn. J. Appl. Phys. 44(8), 6148 (2005)

    Article  ADS  Google Scholar 

  22. O. Ohtaka, H. Fukui, K. Funakoshi, W. Utsumi, T. Irifune, T. Kikegawa, High Press. Res. 22(1), 221 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The Australian Research Council is gratefully acknowledged for financial support. The ANU nodes of the ANFF and The AMMRF, both established under the Australian National Cooperative Research Infrastructure Strategy, are acknowledged for access to the facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Shalav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalav, A., Venkatachalam, D.K. & Elliman, R.G. Fabrication of coaxial nanowire heterostructures: SiO x nanowires with conformal TiO2 coatings. Appl. Phys. A 107, 749–754 (2012). https://doi.org/10.1007/s00339-012-6804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6804-y

Keywords

Navigation