Skip to main content
Log in

Carbon nanotubes grown on electrospun polyacrylonitrile-based carbon nanofibers via chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) grown on electrospun polyacrylonitrile-based carbon nanofibers (CNFs) via chemical vapor deposition were studied in this paper. Analyses of Raman spectra and X-ray diffraction patterns revealed that incorporation of CNTs could improve the crystalline and structure integrity of the obtained CNFs/CNTs composite. About 7.4 wt% of CNTs were grown on the electrospun CNFs confirmed by thermal gravimetric analysis. The electrochemical results showed that the surface activity and the cycle retention of the CNFs/CNTs composite were enhanced due to its three-dimensional nanostructure, enhanced pore distribution, and good conductivity. The CNFs/CNTs composite offers a great potential for high-performance lithium-ion batteries as the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.W. Ji, Z. Lin, A.J. Medford, X.W. Zhang, Carbon 47, 3346 (2009)

    Article  Google Scholar 

  2. L.W. Ji, X.W. Zhang, Carbon 47, 3219 (2009)

    Article  Google Scholar 

  3. H.S. Choi, J.G. Lee, H.Y. Lee, S.W. Kim, C.R. Park, Electrochim. Acta 56, 790 (2010)

    Article  Google Scholar 

  4. X. Fan, L. Zou, Y.P. Zheng, F.Y. Kang, W.C. Shen, Electrochem. Solid-State Lett. 12, A199 (2009)

    Article  Google Scholar 

  5. L.W. Ji, X.W. Zhang, Electrochem. Commun. 11, 795 (2009)

    Article  Google Scholar 

  6. Z.X. Dong, S.J. Kennedy, Y.Q. Wu, J. Power Sources 196, 4886 (2011)

    Article  Google Scholar 

  7. L. Zou, L. Gan, R.T. Lv, M.X. Wang, Z.H. Huang, F.Y. Kang, W.C. Shen, Carbon 49, 89 (2011)

    Article  Google Scholar 

  8. J.B. Mu, B. Chen, Z.C. Guo, M.Y. Zhang, Z.Y. Zhang, C.L. Shao, Y.C. Liu, J. Colloid Interface Sci. 356, 706 (2011)

    Article  Google Scholar 

  9. C.S. Sharma, H. Katepalli, A. Sharma, M. Madou, Carbon 49, 1727 (2011)

    Article  Google Scholar 

  10. X.F. Tang, Y. Liu, H.Q. Hou, T.Y. You, Talanta 83, 1410 (2011)

    Article  Google Scholar 

  11. Z. Kurban, A. Lovell, D. Jenkins, S. Bennington, I. Loader, A. Schober, N. Skipper, Eur. Polym. J. 46, 1194 (2010)

    Article  Google Scholar 

  12. S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi, Carbon 48, 3575 (2010)

    Article  Google Scholar 

  13. Z.X. Yang, G.D. Du, C.Q. Feng, S.A. Li, Z.X. Chen, P. Zhang, Z.P. Guo, X.B. Yu, G.N. Chen, S.Z. Huang, H.K. Liu, Electrochim. Acta 55, 5485 (2010)

    Article  Google Scholar 

  14. L. Zhang, F. Li, Electrochim. Acta 55, 6695 (2010)

    Article  Google Scholar 

  15. C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv. Funct. Mater. 16, 2393 (2006)

    Article  Google Scholar 

  16. H.Q. Hou, D.H. Reneker, Adv. Mater. 16, 69–73 (2004)

    Article  Google Scholar 

  17. A.K. Mishra, T. Arockiadoss, S. Ramaprabhu, Chem. Eng. J. 162, 1026 (2010)

    Article  Google Scholar 

  18. M.A. Pasha, M. Ranjbar, M.A. Vesaghi, A. Shafiekhani, Appl. Surf. Sci. 257, 1511 (2010)

    Article  ADS  Google Scholar 

  19. H.C. Su, C.M. Lin, S.J. Yen, Y.C. Chen, C.H. Chen, S.R. Yeh, W. Fang, H. Chen, D.J. Yao, Y.C. Chang, T.R. Yew, Biosens. Bioelectron. 26, 220 (2010)

    Article  Google Scholar 

  20. N. Tumilty, L. Kasharina, T. Prokhoda, B. Sinelnikov, R.B. Jackman, Carbon 48, 3027 (2010)

    Article  Google Scholar 

  21. F. Kokai, K. Uchiyama, T. Shimazu, A. Koshio, Appl. Phys. A 101, 497 (2010)

    Article  ADS  Google Scholar 

  22. S. Basri, S.K. Kamarudin, W.R.W. Daud, Z. Yaakub, Int. J. Hydrog. Energy 35, 7957 (2010)

    Article  Google Scholar 

  23. E. Maccallini, T. Tsoufis, A. Policicchio, S. La Rosa, T. Caruso, G. Chiarello, E. Colavita, V. Formoso, D. Gournis, R.G. Agostino, Carbon 48, 3434 (2010)

    Article  Google Scholar 

  24. Z. Yang, Q. Zhang, G. Luo, J.-Q. Huang, M.-Q. Zhao, F. Wei, Appl. Phys. A 100, 533 (2010)

    Article  ADS  Google Scholar 

  25. M. Aksak, Y. Selamet, Appl. Phys. A 100, 213 (2010)

    Article  ADS  Google Scholar 

  26. H.B. Li, W.J. Wang, B. Song, R. Wu, J. Li, Y.F. Sun, Y.F. Zheng, J.K. Jian, J. Alloys Compd. 503, L34 (2010)

    Article  Google Scholar 

  27. G. Pilatos, E.C. Vermisoglou, G.E. Romanos, G.N. Karanikolos, N. Boukos, V. Likodimos, N.K. Kanellopoulos, Adv. Funct. Mater. 20, 2500 (2010)

    Article  Google Scholar 

  28. B. Li, X.H. Cao, H.G. Ong, J.W. Cheah, X.Z. Zhou, Z.Y. Yin, H. Li, J.L. Wang, F. Boey, W. Huang, H. Zhang, Adv. Mater. 22, 3058 (2010)

    Article  ADS  Google Scholar 

  29. Z.G. Zhao, L.J. Ci, H.M. Cheng, J.B. Bai, Carbon 43, 663 (2005)

    Article  Google Scholar 

  30. N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J. Hayashi, T. Chiba, Carbon 44, 1754 (2006)

    Article  Google Scholar 

  31. C. Lai, Q.H. Guo, X.F. Wu, D.H. Reneker, H. Hou, Nanotechnology 19, 195303 (2008)

    Article  ADS  Google Scholar 

  32. D.C.D. Nath, V. Sahajwalla, Appl. Phys. A 104, 539 (2011)

    Article  ADS  Google Scholar 

  33. Z.Y. Li, H.M. Huang, T.C. Shang, F. Yang, W. Zheng, C. Wang, S.K. Manohar, Nanotechnology 17, 917 (2006)

    Article  ADS  Google Scholar 

  34. J. Li, E.H. Liu, W. Li, X.Y. Meng, S.T. Tan, J. Alloys Compd. 478, 371 (2009)

    Article  Google Scholar 

  35. Y.H. Yu, Q. Yang, D.H. Teng, X.P. Yang, S. Ryu, Electrochem. Commun. 12, 1187 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

Financial support of this work was provided by the National Basic Research Program of China (Grant No. 2010CB934700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Li, Y., Zhao, Y. et al. Carbon nanotubes grown on electrospun polyacrylonitrile-based carbon nanofibers via chemical vapor deposition. Appl. Phys. A 106, 863–869 (2012). https://doi.org/10.1007/s00339-012-6770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6770-4

Keywords

Navigation