Skip to main content
Log in

Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) were grown on thin iron (Fe) films on SiO2/Si substrates by chemical vapor deposition (CVD) at four different hydrogen (H2)/methane (CH4) ratios at temperatures ranging from 925 to 1000°C. The effects of temperature and the amount of hydrogen gas on the mean diameter at increasing temperature were examined. We demonstrated that the mean diameter and its distribution depend not only on temperature but also on the H2 amount. We showed that increasing H2 amount strongly affects the structure of CNTs, especially at high growth temperature; the mean diameter at 1000°C reduced from about 383 to 34 nm by increasing H2 amount from 24 to 50 sccm. We observed that at high temperature growth the mean diameter was decreasing very fast initially with increasing H2 amount suggesting the dominance of H2 over the growth temperature. A decrease in the slope of diameter vs. H2 amount with further increment in H2 amount implied that the temperature was, then, deciding the CNT diameter through catalyst particle coarsening. The statistical analysis presented implies that the H2 amount has to be adjusted according to the growth temperature for given CH4 amount to keep CNT diameter under control, and the large diameter distributions at high temperature and high H2 amount can be associated with the large variation in the catalyst particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Avouris, Phys. Today 62, 34–40 (2009)

    Article  Google Scholar 

  2. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Article  ADS  Google Scholar 

  3. T. Yamada, T. Namai, K. Hata, D.N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima, Nat. Nanotechnol. 1, 131–136 (2006)

    Article  ADS  Google Scholar 

  4. C. Mattavi, C. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, J. Robertson, J. Phys. Chem. C 112, 12207–12213 (2008)

    Article  Google Scholar 

  5. G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, W. Hoenlein, Nano Lett. 3, 257–259 (2003)

    Article  ADS  Google Scholar 

  6. W.H. Teh, C.G. Smith, K.B.K. Teo, R.G. Lacerda, G.A.J. Amaratunga, W.I. Milne, M. Castignolles, A. Loiseau, J. Vac. Sci. Technol. B 21, 1380–1383 (2003)

    Article  Google Scholar 

  7. J.M. Simmons, B.M. Nichols, M.S. Marcus, O.M. Castellini, R.J. Hamers, M.A. Eriksson, Small 2, 902–909 (2006)

    Article  Google Scholar 

  8. N. Yoshida, T. Yamamoto, F. Minoguchi, S. Kishimoto, Catal. Lett. 23, 237 (1994)

    Article  Google Scholar 

  9. M. Jung, K.Y. Eun, J. Lee, Y. Baik, K. Lee, J.W. Park, Diam. Relat. Mater. 10, 1235 (2001)

    Article  Google Scholar 

  10. T.Y. Kim, K.R. Lee, K.Y. Eun, K.H. Oh, Chem. Phys. Lett. 372, 603–607 (2003)

    Article  ADS  Google Scholar 

  11. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105–1107 (1998)

    Article  ADS  Google Scholar 

  12. A.G. Nasibulin, D.P. Brown, P. Queipo, D. Gonzalez, H. Jiang, A.S. Anisimov, E.I. Kauppinen, Phys. Status Solidi B 243, 3095–3100 (2006)

    Article  ADS  Google Scholar 

  13. F.B. Rao, T. Li, Y.L. Wang, Physica E 40, 779–784 (2008)

    Article  ADS  Google Scholar 

  14. L. Dong, J. Jiao, S. Foxley, D. Tuggle, C.L. Mosher, G.H. Grathoff, J. Nanosci. Nanotechnol. 2, 155–160 (2002)

    Article  Google Scholar 

  15. L. Ci, Y. Li, B. Wei, J. Liang, C. Xu, D. Wu, Carbon 38, 1933–1937 (2000)

    Article  Google Scholar 

  16. G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Nanotechnology 16, 532–535 (2005)

    Article  ADS  Google Scholar 

  17. G.D. Nessim, A.J. Hart, J.S. Kim, D. Acquaviva, J. Oh, C.D. Morgan, M. Seita, J.S. Leib, C.V. Thompson, Nano Lett. 8, 3587–3593 (2008)

    Article  ADS  Google Scholar 

  18. G.Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Proc. Natl. Acad. Sci. 102, 16141 (2005)

    Article  ADS  Google Scholar 

  19. A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, B. Wei, J. Mater. Res. 16, 3107–3110 (2001)

    Article  ADS  Google Scholar 

  20. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 522–525 (1993)

    Article  ADS  Google Scholar 

  21. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362–1364 (2004)

    Article  ADS  Google Scholar 

  22. R.F. Service, Science 306, 1275 (2004)

    Article  Google Scholar 

  23. H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, T. Setoguchi, Carbon 44, 2912–2918 (2006)

    Article  Google Scholar 

  24. M. Bystrzejewski, R. Schonfelder, G. Cuniberti, H. Lange, A. Huczko, T. Gemming, T. Pichler, B. Buchner, M. Rummeli, Chem. Mater. 20, 6586–6588 (2008)

    Article  Google Scholar 

  25. A. Peigney, Ch. Laurent, A. Rousset, J. Mater. Chem. 9, 1167–1177 (1999)

    Article  Google Scholar 

  26. A.R. Biris, Z. Li, E. Dervishi, D. Lupu, Y. Xu, V. Saini, F. Watanabe, A.S. Biris, Phys. Lett. A 372, 3051–3057 (2008)

    Article  ADS  Google Scholar 

  27. P. Ayala, A.G.T. Gemming, B. Büchner, M.H. Rümmeli, D. Grimm, J. Schumann, R. Kaltofen, F.L. Freire Jr., H.D. Fonseca Filho, T. Pichler, Chem. Mater. 19, 6131–6137 (2007)

    Article  Google Scholar 

  28. M.H. Rümmeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbác, L. Dunsch, O. Jost, S.R.P. Silva, W. Pompe, B. Büchner, Nano Lett. 5, 1209–1215 (2005)

    Article  ADS  Google Scholar 

  29. S.H. Kim, M.R. Zachariah, Mater. Lett. 61, 2079 (2007)

    Article  Google Scholar 

  30. M.H. Rümmeli, F. Schffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R.J. Kalenczuk, B. Rellinghaus, B. Bchner, T. Pichler, J. Am. Chem. Soc. 129, 15772–15773 (2007)

    Article  Google Scholar 

  31. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Appl. Phys. Lett. 78, 1394–1396 (2001)

    Article  ADS  Google Scholar 

  32. E. Terrado, E. Muñoz, W.K. Maser, A.M. Benito, M.T. Martínez, Diam. Relat. Mater. 16, 1082–1086 (2007)

    Article  Google Scholar 

  33. S. Kir, Y. Selamet, to be published

  34. H. Dai, Phys. World 13, 43–47 (2000)

    ADS  Google Scholar 

  35. N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui, Carbon 44, 1859–1862 (2006)

    Article  Google Scholar 

  36. C.J. Lee, J. Park, Y. Huh, Y. Lee, Chem. Phys. Lett. 343, 33–38 (2001)

    Article  ADS  Google Scholar 

  37. J. Height, J.B. Howard, J.W. Tester, J.B. Vander Sande, J. Phys. Chem. B 109, 12337–12346 (2005)

    Article  Google Scholar 

  38. A. Datye, Q. Xu, K. Kharas, J. McCarty, Catal. Today 111, 59–67 (2006)

    Article  Google Scholar 

  39. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395, 878–881 (1998)

    Article  ADS  Google Scholar 

  40. X. Li, X. Zhang, L. Ci, R. Shah, C. Wolfe, S. Kar, S. Talapatra, P.M. Ajayan, Nanotechnology 19, 455609 (2008)

    Article  ADS  Google Scholar 

  41. M.P. Siegal, D.L. Overmyer, P.P. Provencio, Appl. Phys. Lett. 80, 2171–2173 (2002)

    Article  ADS  Google Scholar 

  42. A. Moisala, A.G. Nasibulin, E.I. Kauppinen, J. Phys., Condens. Matter 15, S3011–S3035 (2003)

    Article  ADS  Google Scholar 

  43. A.M. Cassell, J.A. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484–6492 (1999)

    Article  Google Scholar 

  44. J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292, 567–574 (1998)

    Article  ADS  Google Scholar 

  45. S. Kang, K. Cho, K. Kim, G. Cho, J. Alloys Compd. 449, 269–273 (2008)

    Article  Google Scholar 

  46. A.J. Hart, A.H. Slocum, I. Royer, Carbon 44, 348–359 (2006)

    Article  Google Scholar 

  47. O.A. Nerushev, M. Sveningsson, L.K.L. Falk, F. Rohmund, J. Mater. Chem. 11, 1122–1132 (2001)

    Article  Google Scholar 

  48. U.C. Chung, Bull. Korean Chem. Soc. 25, 1521–1524 (2004)

    Article  Google Scholar 

  49. H. Ago, K. Nakamura, N. Uehara, M. Tsuji, J. Phys. Chem. B 108, 18908–18915 (2004)

    Article  Google Scholar 

  50. A.C. Dillon, P.A. Parilla, J.L. Alleman, T. Gennett, K.M. Jones, M.J. Heben, Chem. Phys. Lett. 401, 522–528 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Selamet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksak, M., Selamet, Y. Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates. Appl. Phys. A 100, 213–222 (2010). https://doi.org/10.1007/s00339-010-5578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5578-3

Keywords

Navigation