Skip to main content
Log in

Realistic limits to computation

III. Climbing the third dimension

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As far as ultra-dense crossbars are related to correspondingly dense wire arrays, the crossbar route to tera-scale integration depends on the availability of preparation techniques for wire arrays with density of 106 cm−1 or more. This linear density implies, for a planar arrangement, a pitch of 10 nm or less, which not only is at the limits of the current technical possibilities, but also can modify appreciably the band structure of silicon. A dramatic increase of density could only be achieved if it were possible to organize the nanowires in a three-dimensional fashion still exploiting the planar technology. In this work processes are described for the fabrication of out-of-plane, vertically arranged, polycrystalline silicon nanowires via a rigorously top-down batch process. These techniques are consistent with the production of wire arrays with linear density (projected on the surface) larger than that achievable with any other proposed top-down process. Used for the fabrication of the bottom wire arrays of crossbars, these processes should eventually allow a cross-point amount per unit area in excess of 1012 cm−2, thus providing candidate technologies for ultra tera scale integration. The technique developed for such out-of-plane crossbars can be used to implement new functions like coils, solenoids and transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. With GSI (giga-scale integration), TSI and so on, one intends the ability to integrate 109, 1012 etc. switching elements in the same chip. Generally, the chip area of complex circuits is slightly larger than 1 cm2, so that the above numbers are also a (slight) overestimate of the amount per square centimetre. Since the interest of this work is also addressed to the preparation of complex but small circuits (e.g. with total area of 102 μm2), I instead assume that acronyms GSI, TSI etc. denote the ability to batch fabricate at the density of 109, 1012 cm−2 etc. Unless otherwise specified, ‘density’ will henceforth be the short form of ‘areal density’.

  2. Without pretending to consider economic problems, I recall that the cost of an apparatus for deep-ultraviolet lithography is about 30 M$. The low throughput of electron-beam lithography is due to the fact that this technique defines the pattern in a serial way and the throughput varies with the feature size F roughly as F 4 [51].

  3. This estimate follows from assuming the whole mankind as potential consumer, that the swarm is formed by 105 agents and that they have a clearance time of 1 year [67].

  4. Actually also the CMOS technology is characterized, for the preparation of interconnects, by the repetition of the same process. However, although the complexity of an interconnection layer is presumably much lower than that of a crossbar, the CMOS technology has been involved in the reduction of the number of interconnecting layers via the use of insulators with lower dielectric constant than SiO2 and conductors with higher electrical conductivity than aluminium.

  5. The progress of electronics is paced not only by the continuous improvements of its basic technology (lithography) that have reduced the feature size from the submillimetre length scale to the deep- submicrometre one, but also (and at the beginning mainly) by the invention of techniques for the self-alignment of one layer with respect to another. Among them the most important ones are the spacer-patterning technique (for the self-alignment of contacts with respect to the gate), local oxidation of silicon (for the self-alignment of active zones with respect to the field) and silicon-gate technology (for the self-alignment of source and drain with respect to the gate).

    History is sparing of compliments to scientists, and even more to technologists: although everybody of the one hundred thousand researchers involved in silicon-device processing is familiar with the silicon-gate technology, the paper reporting its invention in 1968 [71] and the one describing its practical application one year later [72] have had, according to the Institute of Scientific Information, 112 and 42 quotations only [73].

References

  1. G.F. Cerofolini, Appl. Phys. A 86, 23 (2007)

    Article  ADS  Google Scholar 

  2. G.F. Cerofolini, Appl. Phys. A 86, 31 (2007)

    Article  ADS  Google Scholar 

  3. R.P. Feynman, Eng. Sci. 23(5), 22 (1960)

    Google Scholar 

  4. E. Bussola, What is a memory, that it may comprehend itself? in Memory Mass Storage, ed. by G. Campardo, F. Tiziani, M. Iaculo (Springer, Berlin, 2011), pp. 1–58

    Chapter  Google Scholar 

  5. E. Drexler, Nanosystems—Molecular Machines, Manufacturing and Computation (Wiley, New York, 1992)

    Google Scholar 

  6. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)

    Article  Google Scholar 

  7. M. Forshaw, R. Stadle, D. Crawley, K. Nikolić, Nanotechnology 15, S220 (2004)

    Article  ADS  Google Scholar 

  8. G.S. Snider, R.S. Williams, Nanotechnology 18, 035204 (2007)

    Article  ADS  Google Scholar 

  9. G.F. Cerofolini, E. Romano, Appl. Phys. A 91, 181 (2008)

    Article  ADS  Google Scholar 

  10. G. Csaba, P. Lugli, IEEE Trans. Nanotechnol. 8, 369 (2009)

    Article  ADS  Google Scholar 

  11. G.F. Cerofolini, D. Mascolo, Semicond. Sci. Technol. 21, 1315 (2006)

    Article  ADS  Google Scholar 

  12. G.F. Cerofolini, V. Casuscelli, A. Cimmino, A. Di Matteo, V. Di Palma, D. Mascolo, E. Romanelli, M.V. Volpe, E. Romano, Semicond. Sci. Technol. 22, 1053 (2007)

    Article  ADS  Google Scholar 

  13. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nu, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  Google Scholar 

  14. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001)

    Article  ADS  Google Scholar 

  15. Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, Chem. Phys. Chem. 3, 519 (2002)

    Article  Google Scholar 

  16. R.F. Service, Science 302, 556 (2003)

    Article  Google Scholar 

  17. D.R. Stewart, D.A.A. Ohlberg, P. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nano Lett. 4, 133 (2004)

    Article  ADS  Google Scholar 

  18. C.N. Lau, D.R. Stewart, R.S. Williams, D. Bockrath, Nano Lett. 4, 569 (2004)

    Article  ADS  Google Scholar 

  19. N.B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D.M. Tennant, R.A. Cirelli, Nanotechnology 17, 1272 (2006)

    Article  ADS  Google Scholar 

  20. G.F. Cerofolini, Nanoscale Devices. Fabrication, Functionalization, and Accessibility from the Macroscopic World (Springer, Berlin, 2009)

    Google Scholar 

  21. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Delonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, Nature 445, 414 (2007)

    Article  ADS  Google Scholar 

  22. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Nature 441, 69 (2006)

    Article  ADS  Google Scholar 

  23. G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, V. Nosik, Microelectron. Eng. 81, 405 (2005)

    Article  Google Scholar 

  24. G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, Nanotechnology 16, 1040 (2005)

    Article  ADS  Google Scholar 

  25. G.F. Cerofolini, G. Ferla, J. Nanopart. Res. 4, 185 (2002)

    Article  Google Scholar 

  26. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Semicond. Sci. Technol. 18, 423 (2003)

    Article  ADS  Google Scholar 

  27. M.P. Stewart, F. Maya, D.V. Kosynkin, S.M. Dirk, J.J. Stapleton, C.L. McGuiness, D.L. Allara, J.M. Tour, J. Am. Chem. Soc. 126, 370 (2004)

    Article  Google Scholar 

  28. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, G.G. Condorelli, I.L. Fragalà, G. Giorgi, A. Sgamellotti, N. Re, Appl. Surf. Sci. 246, 52 (2005)

    Article  ADS  Google Scholar 

  29. T. He, J. He, M. Lu, B. Chen, H. Pang, W.F. Reus, W.M. Nolte, D.P. Nackashi, P.D. Franzon, J.M. Tour, J. Am. Chem. Soc. 128, 14537 (2006)

    Article  Google Scholar 

  30. M.Y. Bashouti, R.T. Tung, H. Haick, Small 23, 2761 (2009)

    Article  Google Scholar 

  31. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, J. Vac. Sci. Technol. B 28, 223 (2010)

    Article  Google Scholar 

  32. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  33. R.G. Neale, D.L. Nelson, G.E. Moore, Electronics 49(9), 56 (1970)

    Google Scholar 

  34. G.F. Cerofolini, L. Meda, Phys. Rev. B 36, 5131 (1987)

    Article  ADS  Google Scholar 

  35. G.F. Cerofolini, L. Meda, C. Volpones, J. Appl. Phys. 63, 4911 (1988)

    Article  ADS  Google Scholar 

  36. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Article  Google Scholar 

  37. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  ADS  Google Scholar 

  38. L. Chua, IEEE Trans. Circuit Theory CT-18, 507 (1971)

    Article  Google Scholar 

  39. D.B. Strukov, G.S. Snider, D.R. Stewart, S.R. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  40. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  41. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  42. G.F. Cerofolini, A. Giussani, A. Modelli, D. Mascolo, D. Ruggiero, D. Narducci, E. Romano, Appl. Surf. Sci. 254, 5781 (2008)

    Article  ADS  Google Scholar 

  43. G.F. Cerofolini, C. Galati, L. Renna, Surf. Interface Anal. 35, 968 (2003)

    Article  Google Scholar 

  44. G.F. Cerofolini, C. Galati, S. Lorenti, L. Renna, O. Viscuso, C. Bongiorno, V. Raineri, C. Spinella, G.G. Condorelli, I.L. Fragala, A. Terrasi, Appl. Phys. A 77, 403 (2003)

    Article  ADS  Google Scholar 

  45. R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, J.R. Heath, Science 310, 465 (2005)

    Article  ADS  Google Scholar 

  46. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, J.R. Heath, Science 300, 112 (2003)

    Article  ADS  Google Scholar 

  47. M. Roukes, Sci. Am. Rep. 17(3), 4 (2007)

    Google Scholar 

  48. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  ADS  Google Scholar 

  49. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  50. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  51. A.E. Grigorescu, C.W. Hagen, Nanotechnology 20, 292001 (2009)

    Article  Google Scholar 

  52. D.C. Flanders, A.E. White, J. Vac. Sci. Technol. B 19, 692 (1981)

    Google Scholar 

  53. G.A. Garfunkel, M.B. Weissman, J. Vac. Sci. Technol. B 8, 1087 (1990)

    Article  Google Scholar 

  54. D. Wang, B.A. Sheriff, M. McAlpine, J.R. Heath, Nano Res. 1, 9 (2008)

    Article  Google Scholar 

  55. J.R. Heath, Acc. Chem. Res. 41, 1609 (2008)

    Article  Google Scholar 

  56. D.C. Flanders, N.N. Efremow, J. Vac. Sci. Technol. B 1, 1105 (1983)

    Article  Google Scholar 

  57. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, G.A. Somorjai, J. Phys. Chem. B 107, 3340 (2003)

    Article  Google Scholar 

  58. Y.-K. Choi, J.S. Lee, J. Zhu, G.A. Somorjai, L.P. Lee, J. Bokor, J. Vac. Sci. Technol. B 21, 2951 (2003)

    Article  Google Scholar 

  59. G.F. Cerofolini, P. Amato, E. Romano, Semicond. Sci. Technol. 23, 075020 (2008)

    Article  ADS  Google Scholar 

  60. Y. Zhao, E. Berenschot, H. Jansen, N. Tas, J. Huskens, M. Elwenspoek, Nanotechnology 20, 315305 (2009)

    Article  ADS  Google Scholar 

  61. M.H. Ben Jamaa, G. Cerofolini, G. De Micheli, Y. Leblebici, Complete nanowire crossbar framework optimized for the multi-spacer patterning technique, in Int. Conf. Compilers, Architecture and Synthesis for Embedded Systems—CASES 2009 (2009), pp. 11–16

    Chapter  Google Scholar 

  62. M.H. Ben Jaama, G. Cerofolini, G. De Micheli, Y. Leblebici, IEEE Trans. Nanotechnol. 10, 891 (2011)

    Article  Google Scholar 

  63. L. Chao (ed.), Intel Technol. J. 12, 77 (2008)

    Google Scholar 

  64. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  65. L.T. Canham, Nature 408, 411 (2000)

    Article  ADS  Google Scholar 

  66. V. Schmidt, J.V. Wittemann, U. Gösele, Chem. Rev. 110, 361 (2010)

    Article  Google Scholar 

  67. G.F. Cerofolini, P. Amato, M. Masserini, G. Mauri, Adv. Sci. Lett. 3, 345 (2010)

    Article  Google Scholar 

  68. P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  69. I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam, J.T. Moon, C.H. Chung, High performance PRAM cell scalable to sub-20 nm technology with below 4F 2 cell size, extendable to DRAM applications, in 2010 Symp. VLSI Technology (2010), Digest of Technical Papers, pp. 203–204

    Google Scholar 

  70. M.L. Polignano, P. Picco, G.F. Cerofolini, J. Electrochem. Soc. 127, 2734 (1980)

    Article  Google Scholar 

  71. F. Faggin, T. Klein, Solid-State Electron. 13, 1125 (1970) extended version of work presented by F. Faggin, T. Klein, L. Vadasz, in Int. Electron Devices Meet., Washington, DC, October 1968

    Article  ADS  Google Scholar 

  72. L.L. Vadasz, A.S. Grove, T.A. Rowe, G.E. Moore, IEEE Spectr. 6(10), 28 (1969)

    Article  Google Scholar 

  73. http://isiwebofknowledge.com/. Accessed on 5 October 2010

  74. G.F. Cerofolini, M. Ferri, E. Romano, F. Suriano, G.P. Veronese, S. Solmi, D. Narducci, Semicond. Sci. Technol. 25, 095011 (2010)

    Article  ADS  Google Scholar 

  75. M. Ferri, A. Roncaglia, S. Solmi, F. Suriano, G.F. Cerofolini, E. Romano, D. Narducci, Microelectron. Eng. 88, 877 (2011)

    Article  Google Scholar 

  76. G.F. Cerofolini, M. Ferri, E. Romano, F. Suriano, G.P. Veronese, S. Solmi, D. Narducci, Semicond. Sci. Technol. 26, 045005 (2011)

    Article  ADS  Google Scholar 

  77. K.K. Likharev, Electronics below 10 nm, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowsky (Amsterdam, Elsevier, 2003), pp. 27–68

    Chapter  Google Scholar 

  78. K.K. Likharev, D.B. Strukov, CMOL: Devices, circuits, and architectures, in Introducing Molecular Electronics, ed. by G. Cuniberti, G. Fagas, K. Richter (Springer, Berlin, 2005), pp. 447–477. Chap. 16

    Google Scholar 

  79. D.B. Strukov, K.K. Likharev, Nanotechnology 16, 137 (2005)

    Article  ADS  Google Scholar 

  80. D.B. Strukov, K.K. Likharev, Nanotechnology 16, 888 (2005)

    Article  ADS  Google Scholar 

  81. K.K. Likharev, J. Nanoelectron. Optoelectron. 3, 203 (2008)

    Article  Google Scholar 

  82. K.K. Likharev, Sci. Adv. Mater. 3, 322 (2011)

    Article  Google Scholar 

  83. D.B. Strukov, R.S. Williams, Proc. Natl. Acad. Sci. USA 106, 20155 (2009)

    Article  ADS  Google Scholar 

  84. G. Cerofolini, E. Romano, D. Narducci, The litho-to-nano link, in Dekker Encyclopedia of Nanoscience and Nanotechnology, 2nd edn., ed. by J.A. Schwarz, C.I. Contescu, K. Putyera (Dekker, New York, 2009), pp. 1890–1900

    Google Scholar 

  85. M.Q. Huda, K. Sakamoto, Nucl. Instrum. Methods Phys. Res. B 216, 20 (2004)

    Article  ADS  Google Scholar 

  86. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464, 873 (2010)

    Article  ADS  Google Scholar 

  87. A. Zolfaghari, A. Chan, B. Razavi, IEEE J. Solid-State Circuits 36, 620 (2001)

    Article  Google Scholar 

  88. L. Ciobanu, D.A. Jayawickrama, X. Zhang, A.G. Webb, J.V. Sweedler, Angew. Chem., Int. Ed. Engl. 42, 4669 (2003)

    Article  Google Scholar 

  89. J.W. Sweedler, R.L. Magin, T.L. Pack, A.G. Webb, Microcoil based micro-NMR spectrometer and method, US Patent 6,788,061, 7 Sept. 2004

  90. A.G. Goloshevsky, J.H. Walton, M.V. Shutov, J.S. de Ropp, S.D. Collins, M.J. McCarthy, Rev. Sci. Instrum. 76, 024101 (2005)

    Article  ADS  Google Scholar 

  91. M. Poggio, C.L. Degen, Nanotechnology 21, 342001 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Cerofolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerofolini, G.F. Realistic limits to computation. Appl. Phys. A 106, 967–982 (2012). https://doi.org/10.1007/s00339-011-6724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6724-2

Keywords

Navigation