Skip to main content
Log in

Molecular electronics in silico

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Assuming with Feynman that single atoms can be used as elementary memory cells, this would give a maximum density of information units of the order of 1015 cm-2 for a planar arrangement. If the chemical composition of the surface is fixed and any information change is simply associated with an electronic or conformational change between two possible states of any given surface atom, the above arrangement would result in a maximum information density of just 1 Pbit cm-2 – peta-scale integration (PSI). The manipulation of information on the atomic scale, however, requires the use of macroscopic-scale apparatuses that may, to date, be operated only at a negligible rate. Fundamental quantum mechanical considerations show instead that electrons can be configured with bit densities of the order of 1012 cm-2 (tera-scale integration, TSI); moreover, electron presence or flow can be controlled and sensed by already existing mesoscopic-scale apparatuses in giga-scale integration (GSI). Even though there is no clear method to enable the full exploitation of the performances of such devices, the TSI density is within the reach of the present technology. Rather than scaling down conventional CMOS (complementary metal–oxide–semiconductor) circuits, TSI may almost be achieved via a hybrid architecture where a silicon-based CMOS circuit controls a nanoscopic crossbar structure hosting in each cross-point a collection of functional molecules able to mimic by themselves the behaviour of a memory cell. The hybrid (silicon + molecules) route, however, poses severe problems. The following ones have been identified as the most important: (i) the setting up of an economically sustainable technology for the preparation of cross-points with density higher than 1011 cm-2; (ii) the demultiplexing of the addressing lines to allow their linkage to the CMOS circuit; (iii) the design, synthesis, and electrical characterization of the functional molecules; and (iv) the grafting via batch processing of the functional molecules to the cross-points forming the crossbar. This paper is devoted to discuss the severe challenges posed by the hybrid architecture and to present the solutions that have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.F. Cerofolini, Appl. Phys. A 86, 23 (2007)

    Google Scholar 

  2. Anon., Nature 432, 8 (2004)

  3. A. Aviram, M. Ratner, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  4. M.A. Reed, MRS Bull. 26, 113 (2001)

    Google Scholar 

  5. J.M. Tour, in Stimulating Concepts in Chemistry, ed. by F. Vögtle, J.F. Stoddart, M. Shibasaki (Wiley-VCH, Weinheim, 2000), p. 237

  6. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Science 286, 1550 (1999)

    Article  Google Scholar 

  7. D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols, Nature 408, 67 (2000)

    Article  ADS  Google Scholar 

  8. R.W. Keyes, in Molecular Electronics and Molecular Electronic Devices, ed. by K. Sienicki (CRC, Boca Raton, FL, 1993), Chap. 1, p. 1

  9. J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)

    Article  Google Scholar 

  10. M.M. Ziegler, M.R. Stan, IEEE Trans. Nanotechnol. 2, 217 (2003)

    Article  ADS  Google Scholar 

  11. A. DeHon, IEEE Trans. Nanotechnol. 2, 23 (2003)

    Article  ADS  Google Scholar 

  12. P.M. Mendes, A.H. Flood, J.F. Stoddart, Appl. Phys. A 80, 1197 (2005)

    Article  Google Scholar 

  13. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001)

    Article  ADS  Google Scholar 

  14. Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, Chem. Phys. Chem. 3, 519 (2002)

    Google Scholar 

  15. R.F. Service, Science 302, 556 (2003)

    Article  Google Scholar 

  16. D.R. Stewart, D.A.A. Ohlberg, P. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nano Lett. 4, 133 (2004)

    Article  ADS  Google Scholar 

  17. C.N. Lau, D.R. Stewart, R.S. Williams, D. Bockrath, Nano Lett. 4, 569 (2004)

    Article  ADS  Google Scholar 

  18. N.B. Zhitenev, W. Jiang, A. Erbe, Z. Bao, E. Garfunkel, D.M. Tennant, R.A. Cirelli, Nanotechnology 17, 1272 (2006)

    Article  ADS  Google Scholar 

  19. M.P. Stewart, F. Maya, D.V. Kosynkin, S.M. Dirk, J.J. Stapleton, C.L. McGuiness, D.L. Allara, J.M. Tour, J. Am. Chem. Soc. 126, 370 (2004)

    Article  Google Scholar 

  20. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Delonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, Nature 445, 414 (2007)

    Article  ADS  Google Scholar 

  21. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Nature 441, 69 (2006)

    Article  ADS  Google Scholar 

  22. G.F. Cerofolini, D. Mascolo, in Nanotechnology for Electronic Materials and Devices, ed. by E. Gusev, A. Korkin, J. Labanowski, S. Luryi (Springer, New York, 2006), Chap. 1, p. 1

  23. G.F. Cerofolini, L. Meda, Physical Chemistry of, in and on Silicon (Springer, Berlin, 1989), Chap. 10

  24. P.S. Weiss, ACS Nano 1, 3 (2007); conversation with H. Rohrer

  25. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors, 2005 edn., available at http://public.itrs.net

  26. J.E. Lilienfeld, U.S. Patent 1,745,175; application filed 8 Oct 1926, granted 18 Jan 1930

  27. O. Heil, U.K. Patent 439,457; application filed 4 Mar 1935, granted 6 Dec 1935

  28. W. Shockley, IEEE Trans. Electron Devices ED-23, 597 (1976)

    Google Scholar 

  29. M. Atalla, D. Khang, IEEE Trans. Electron. Dev. ED-9, 507 (1962)

    Google Scholar 

  30. J.A. Appels, M.M. Paffen, Philips Res. Rep. 6, 157 (1971)

    Google Scholar 

  31. E. Kooi, J.G. van Lierop, W.H.C.G. Verkuijlen, R. de Werdt, Philips Res. Rep. 26, 166 (1971)

    Google Scholar 

  32. L.L. Vadasz, A.S. Grove, T.A. Rowe, G.E. Moore, IEEE Spectrum 6, 28 (1969)

    Google Scholar 

  33. W.R. Hunter, T.C. Holloway, P.K. Chatterjee, A.F. Tasch Jr., IEEE Electron Device Lett. EDL-2, 4 (1981)

    Google Scholar 

  34. Y.-K. Choi, T.-J. King, C. Hu, IEEE Trans. Electron Devices ED-49, 436 (2002)

    Google Scholar 

  35. D. Natelson, R.L. Willett, K.W. West, L.N. Pfeiffer, Appl. Phys. Lett. 77, 1991 (2000)

    Article  ADS  Google Scholar 

  36. N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, J.R. Heath, Science 300, 112 (2003)

    Article  ADS  Google Scholar 

  37. D.B. Gates, Q.B. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)

    Article  Google Scholar 

  38. G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, V. Nosik, Microelectron. Eng. 81, 405 (2005)

    Article  Google Scholar 

  39. G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, Nanotechnology 16, 1040 (2005)

    Article  ADS  Google Scholar 

  40. G.F. Cerofolini, Nanotechnol. E-Newslett. 7, 5 (2005)

    Google Scholar 

  41. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, G.A. Somorjai, J. Phys. Chem. B 107, 3340 (2003)

    Article  Google Scholar 

  42. D.C. Flanders, N.N. Efremow, J. Vac. Sci. Technol. B 1, 1105 (1983)

    Article  Google Scholar 

  43. Y.-K. Choi, J.S. Lee, J. Zhu, G.A. Somorjai, L.P. Lee, J. Bokor, J. Vac. Sci. Technol. 21, 2951 (2003)

    Article  Google Scholar 

  44. S. Wurm, Solid State Technol., October 2006 online, p. 01-011, available at www.solid-state.com

  45. M. Roukes, Sci. Am. Rep. 17, 4 (2007)

    Google Scholar 

  46. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001)

  47. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  48. A. DeHon, P. Lincoln, J.E. Savage, IEEE Trans. Nanotechnol. 2, 165 (2003)

    Article  ADS  Google Scholar 

  49. R. Alley, M. Cumbie, R. Enck, D. Huang, P. Kornilovitch, S. Ramamoorthi, J. Wu, X. Yang, MST News 4/06, 8 (2006)

    Google Scholar 

  50. K. Likharev, D.B. Strukov, in Introducing Molecular Electronics, ed. by G. Cuniberti, G. Fagas, K. Richter (Springer, Berlin, 2005), Chap. 16, p. 447

  51. D.B. Strukov, K. Likharev, Nanotechnology 16, 137 (2005)

  52. R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, J.R. Heath, Science 310, 465 (2005)

    Article  ADS  Google Scholar 

  53. W. Wu, G.-Y. Jung, D.L. Olynick, J. Strasnicky, Z. Li, X. Li, D.A.A. Ohlberg, Y. Chen, S.-Y. Wang, J.A. Liddle, W.M. Tong, R.S. Williams, Appl. Phys. A 80, 1173 (2005)

    Article  Google Scholar 

  54. G.F. Cerofolini, D. Mascolo, Semicond. Sci. Technol. 21, 1315 (2006)

    Article  ADS  Google Scholar 

  55. G.F. Cerofolini, Appl. Phys. A 86, 31 (2007)

    Article  ADS  Google Scholar 

  56. D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Anal. Chim. Acta 568, 84 (2006)

    Article  Google Scholar 

  57. H. Yu, Y. Luo, K. Beverly, J.F. Stoddart, H.-R. Tseng, J.R. Heath, Angew. Chem. Int. Ed. 42, 5706 (2003)

    Google Scholar 

  58. A. Salomon, T. Boecking, C.K. Chan, F. Amy, O. Girshevitz, D. Cahen, A. Kahn, Phys. Rev. Lett. 95, 266807 (2005)

    Google Scholar 

  59. O. Seitz, T. Böcking, A. Salomon, J.J. Gooding, D. Cahen, Langmuir 22, 6915 (2006)

    Article  Google Scholar 

  60. G.F. Cerofolini, A. Giussani, F. Carone Fabiani, A. Modelli, D. Mascolo, D. Ruggiero, D. Narducci, E. Romano, Surf. Interface Anal. 39, 836 (2007)

    Google Scholar 

  61. W. Wang, T. Lee, M.A. Reed, J. Phys. Chem. B 108, 18398 (2004)

    Google Scholar 

  62. W. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Nano Lett. 4, 643 (2004)

    Google Scholar 

  63. G. Fagas, J.C. Greer, Nanotechnology 18, 424010 (2007)

    Article  ADS  Google Scholar 

  64. J. He, B. Chen, A.K. Flatt, J.J. Stephenson, C.D. Doyle, J.M. Tour, Nat. Mater. 5, 63 (2006)

    Article  ADS  Google Scholar 

  65. L. Baldi, G.F. Cerofolini, G. Ferla, G. Frigerio, Phys. Stat. Solidi A 48, 523 (1978)

    Article  ADS  Google Scholar 

  66. L. Baldi, G.F. Cerofolini, G. Ferla, J. Electrochem. Soc. 127, 125 (1980)

    Article  Google Scholar 

  67. G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 55, 579 (1984)

    Article  ADS  Google Scholar 

  68. M.L. Polignano, G.F. Cerofolini, H. Bender, C. Claeys, J. Appl. Phys. 64, 869 (1988)

    Article  ADS  Google Scholar 

  69. P. Cappelletti, G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 57, 646 (1985)

    Article  ADS  Google Scholar 

  70. G.F. Cerofolini, M.L. Polignano, J. Appl. Phys. 55, 3823 (1984)

    Article  ADS  Google Scholar 

  71. G.F. Cerofolini, M.L. Polignano, Appl. Phys. A 50, 273 (1990)

    Article  ADS  Google Scholar 

  72. G.F. Cerofolini, Phys. Stat. Solidi A 102, 345 (1987)

    Article  ADS  Google Scholar 

  73. J.M. Seminario, A.G. Zacarias, J.M. Tour, J. Am. Chem. Soc. 122, 3015 (2000) F

    Article  Google Scholar 

  74. Y. Ikenoue, N. Uotani, A.O. Patil, F. Wudl, A.J. Heeger, Synth. Met. 30, 305 (1989)

    Article  Google Scholar 

  75. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  76. R. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  77. E.H. Hauge, J.A. Støvneng, Rev. Mod. Phys. 61, 917 (1989)

    Article  ADS  Google Scholar 

  78. P. Pfeifer, J. Frölich, Rev. Mod. Phys. 67, 761 (1995)

    Article  ADS  Google Scholar 

  79. S.F. Bent, Surf. Sci. 500, 879 (2002)

    Article  ADS  Google Scholar 

  80. G. Cleland, B.R. Horrocks, A. Houlton, J. Chem. Soc. Faraday Trans. 91, 4001 (1995)

    Article  Google Scholar 

  81. A. Ulman, Adv. Mater. 2, 573 (1990)

    Article  Google Scholar 

  82. C.A. Roth, Ind. Eng. Chem. Prod. Res. Dev. 11, 134 (1972)

    Google Scholar 

  83. J.M. Buriak, Chem. Rev. 102, 1271 (2002)

    Google Scholar 

  84. H. Ubara, T. Imura, A. Hiraki, Solid State Commun. 50, 673 (1984)

    Google Scholar 

  85. G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari, Appl. Phys. Lett. 56, 656 (1990)

    Google Scholar 

  86. T. Aoyama, K. Goto, T. Yamazaki, T. Ito, J. Vac. Sci. Technol. A 14, 2909 (1996)

    Google Scholar 

  87. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, N. Spinella, D. Jones, V. Palermo, Phys. Rev. B 72, 125431 (2005)

    Google Scholar 

  88. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (Wiley, New York, 1988)

  89. M.A. Brook, Silicon in Organic, Organometallic and Polymer Chemistry (Wiley, Chichester, 2000), p. 402

  90. J.S. Hovis, R.J. Hamers, J. Phys. Chem. B 101, 9581 (1997)

    Google Scholar 

  91. H. Liu, R.J. Hamers, Surf. Sci. 416, 354 (1998)

    Google Scholar 

  92. M.P. Schwartz, M.D. Ellison, S.K. Coulter, J.S. Hovis, R.J. Hamers, J. Am. Chem. Soc. 122, 8529 (2000)

    Google Scholar 

  93. M.P. Schwartz, R.J. Hamers, Surf. Sci. 515, 75 (2002)

    Google Scholar 

  94. J. Terry, M.R. Lindford, C. Wigren, R. Cao, P. Pianetta, C.E.D. Chidsey, J. Appl. Phys. 85, 213 (1999)

    Google Scholar 

  95. A.B. Sieval, A.L. Demirel, J.W.M. Nissink, J.H. van der Maas, W.H. de Jeu, H. Zuilhof, E.J.R. Sudholter, Langmuir 14, 1759 (1998)

  96. A.B. Sieval, V. Vleemimg, H. Zuilhof, E.J.R. Sudholter, Langmuir 15, 8288 (1999)

    Google Scholar 

  97. A. Scandurra, L. Renna, G. Cerofolini, S. Pignataro, Surf. Interface Anal. 34, 777 (2002)

    Google Scholar 

  98. A. Lehner, G. Steinhoff, M.S. Brandt, M. Eickhoff, M. Stutzmann, J. Appl. Phys. 94, 2289 (2003)

    Article  ADS  Google Scholar 

  99. M. Kosuri, H. Gerung, Q. Li, S.M. Han, B.C. Bunker, T.M. Mayer, Langmuir 19, 9315 (2003)

    Article  Google Scholar 

  100. A.B. Sieval, R. Opitz, H.P.A. Maas, M.G. Schoeman, G. Meijer, F.J. Vergeldt, H. Zuilhof, E.J.R. Sudholter, Langmuir 16, 10359 (2000)

    Article  Google Scholar 

  101. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Mater. Sci. Eng. C 23, 253 (2003)

    Article  Google Scholar 

  102. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Semicond. Sci. Technol. 18, 423 (2003)

    Article  ADS  Google Scholar 

  103. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, O. Viscuso, G.G. Condorelli, I.L. Fragalà, Mater. Sci. Eng. C 23, 989 (2003)

    Article  Google Scholar 

  104. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Appl. Phys. A 80, 161 (2004)

    Article  ADS  Google Scholar 

  105. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Surf. Interface Anal. 36, 71 (2004)

    Google Scholar 

  106. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, G.G. Condorelli, I.L. Fragalà, G. Giorgi, A. Sgamellotti, N. Re, Appl. Surf. Sci. 246, 52 (2005)

    Google Scholar 

  107. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, Surf. Interface Anal. 38, 126 (2006)

    Google Scholar 

  108. M. Woods, S. Carlsson, Q. Hong, S.N. Patole, L.H. Lie, A. Houlton, B.R. Horrocks, J. Phys. Chem. B 109, 24035 (2005)

    Article  Google Scholar 

  109. C. Coletti, A. Marrone, G. Giorgi, A. Sgamellotti, G.F. Cerofolini, N. Re, Langmuir 22, 9949 (2006)

    Article  Google Scholar 

  110. G.F. Cerofolini, G. Ferla, J. Nanopart. Res. 4, 185 (2002)

    Article  Google Scholar 

  111. S.W. Howell, S.M. Dirk, K. Childs, H. Pang, M. Blain, R.J. Simonson, J.M. Tour, D.R. Wheeler, Nanotechnology 16, 754 (2005)

    Article  ADS  Google Scholar 

  112. G.F. Cerofolini, C. Galati, S. Reina, L. Renna, P. Ward, Appl. Phys. A 81, 187 (2005)

    Article  ADS  Google Scholar 

  113. G.F. Cerofolini, L. Meda, Appl. Surf. Sci. 89, 351 (1995)

    Article  ADS  Google Scholar 

  114. G.F. Cerofolini, Appl. Surf. Sci. 133, 108 (1998)

    Article  ADS  Google Scholar 

  115. J. Kemsley, Chem. Eng. News 85, 17 (2007)

    Google Scholar 

  116. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Proc. IEEE 91, 489 (2003)

    Google Scholar 

  117. C.D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J.M. Shaw, Science 283, 822 (1999)

    Google Scholar 

  118. G.F. Cerofolini, V. Casuscelli, A. Cimmino, A. Di Matteo, V. Di Palma, D. Mascolo, E. Romanelli, M.V. Volpe, E. Romano, Semicond. Sci. Technol. 22, 1053 (2007)

    Article  ADS  Google Scholar 

  119. D.C. Neckers, J. Photochem. Photobiol. A 47, 1 (1989)

    Article  Google Scholar 

  120. C. Lambert, T. Sarna, T.G. Truscott, J. Chem. Soc. Faraday Trans. 86, 3879 (1990)

    Article  Google Scholar 

  121. A. Bandhopadhyay, A.J. Pal, J. Phys. Chem. B 107, 2531 (2003)

    Article  Google Scholar 

  122. A. Bandhopadhyay, A.J. Pal, Appl. Phys. Lett. 82, 1215 (2003)

    Article  ADS  Google Scholar 

  123. A. Bandhopadhyay, A.J. Pal, Chem. Phys. Lett. 371, 86 (2003)

    Article  ADS  Google Scholar 

  124. S.K. Majee, A. Bandhopadhyay, A.J. Pal, Chem. Phys. Lett. 399, 284 (2004)

    Article  ADS  Google Scholar 

  125. A. Bandhopadhyay, A.J. Pal, J. Phys. Chem. B 109, 6084 (2005)

    Article  Google Scholar 

  126. F.L.E. Jakobsson, X. Crispin, M. Berggren, Appl. Phys. Lett. 87, 63503 (2005)

    Article  Google Scholar 

  127. S. Karthäuser, B. Lüssem, M. Weides, M. Alba, A. Besmehn, R. Oligschlaeger, R. Waser, J. Appl. Phys. 100, 094504 (2006)

    Article  ADS  Google Scholar 

  128. R.F. Heck, J. Am. Chem. Soc. 90, 5518 (1968)

    Article  Google Scholar 

  129. K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 44, 67 (1975)

    Google Scholar 

  130. H. Jan, J.M. Tour, J. Org. Chem. 68, 5091 (2003)

    Google Scholar 

  131. X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, J. Michl, J. Am. Chem. Soc. 126, 4540 (2004)

    Google Scholar 

  132. J.D. Badji, V. Balzani, A. Credi, S. Silvi, J.F. Stoddart, Science 303, 1845 (2004)

    Article  ADS  Google Scholar 

  133. Y. Shirai, A.J. Osgood, Y. Zhao, K.F. Kelly, J.M. Tour, Nano Lett. 5, 230 (2005)

    Article  Google Scholar 

  134. A. Credi, V. Balzani, S.J. Langford, J.F. Stoddart, J. Am. Chem. Soc. 119, 2679 (1997)

    Article  Google Scholar 

  135. V. Balzani, M. Gomez-Lopez, J.F. Stoddart, Acc. Chem. Res. 31, 405 (1998)

    Article  Google Scholar 

  136. B.L. Feringa, R.A. van Delden, M.K.J. ter Wiel, Pure Appl. Chem. 75, 563 (2003)

    Article  Google Scholar 

  137. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)

    Google Scholar 

  138. W.R. Browne, B.L. Feringa, Nat. Nanotechnol. 1, 25 (2006)

    Google Scholar 

  139. R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon, C.W.M. Bastiaansen, D.J. Broer, B.L. Feringa, Nature 440, 163 (2006)

    Google Scholar 

  140. J.M. Lehn, P. Ball, in The New Chemistry, ed. by N. Hall (Cambridge University Press, Cambridge, 2000), Chap. 12

  141. N. van Gulick, New J. Chem. 17, 619 (1993); originally presented at the Reaction Mechanisms Conference held in Princeton, NJ, in 1960

    Google Scholar 

  142. H.L. Frisch, E. Wasserman, J. Am. Chem. Soc. 83, 3789 (1961)

    Google Scholar 

  143. D.M. Walba, Tetrahedron 41, 3161 (1985)

  144. J.-P. Sauvage, Acc. Chem. Res. 23, 319 (1990)

    Google Scholar 

  145. R. Bez, Microelectron. Eng. 80, 249 (2005)

    Google Scholar 

  146. R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics (Addison Wesley, Reading, MA, 1989), Chap. 46

  147. A. Vologodskii, Phys. Life Rev. 23, 119 (2006)

    Google Scholar 

  148. N. Thomas, R.A. Thornhill, J. Phys. D: Appl. Phys. 31, 253 (1998)

    Google Scholar 

  149. C. Mavroidis, A. Dubey, M.L. Yarmush, Annu. Rev. Biomed. Eng. 6, 363 (2004)

    Google Scholar 

  150. A. Hjelmfelt, J. Ross, Physica D 84, 180 (1995)

    Google Scholar 

  151. L. Hood, J.R. Heath, M.E. Phelps, B. Lin, Science 306, 640 (2004)

    Google Scholar 

  152. M.G.L. van der Huvel, C. Dekker, Science 317, 333 (2007)

    Google Scholar 

  153. G.F. Cerofolini, G. Ferla, A. Foglio Para, Giorn. Fis. 23, 863 (1982)

  154. M. Grattarola, A. Cambiaso, S. Cenderelli, G. Parodi, M. Tedesco, B. Die, G.F. Cerofolini, L. Meda, S. Solmi, in Molecular Electronics: Biosensors and Biocomputers, ed. by F.T. Hong (Plenum, New York, 1989), p. 297

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.F. Cerofolini.

Additional information

PACS

85.85.+j; 85.35.-p; 85.40.Hp; 85.65.+h; 42.82.Cr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerofolini, G., Romano, E. Molecular electronics in silico. Appl. Phys. A 91, 181–210 (2008). https://doi.org/10.1007/s00339-008-4415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4415-4

Keywords

Navigation