Skip to main content
Log in

Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−x Ge x nanowires

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The recent demonstration of thermal conductivity of rough electrolessly etched Si nanowire (Hochbaum et al., Nature, 451:163, 2008) attracted a lot of interest, because it could not be explained by the existing theory; thermal conductivity of rough Si nanowires falls below the boundary scattering of the thermal conductivity. However, nanoscale pores presented in the nanowires (Hochbaum et al., Nano Letters, 9:3550–3554, 2009) hinder one to be fully convinced that the surface roughness solely made a contribution to the significant reduction in thermal conductivity. In this study, we synthesized vapor–liquid–solid (VLS) grown rough Si1−x Ge x nanowire and measured and theoretically simulated thermal conductivity of the nanowire. The thermal conductivity of rough Si0.96Ge0.04 nanowire is an order of magnitude lower than that of bulk Si0.96Ge0.04 and around a factor of four times lower than that of smooth Si0.96Ge0.04 nanowire. This significant reduction could be explained by the fact that the surface roughness scatters medium-wavelength phonons, whereas the long-wavelength phonons are scattered by phonon boundary scattering, and the short-wavelength phonons are scattered by alloy scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  2. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P.D. Yang, Nano Lett. 9, 3550–3554 (2009)

    Article  ADS  Google Scholar 

  3. G.B. Akguc, J.B. Gong, Phys. Rev. B 80, 195408 (2009)

    Article  ADS  Google Scholar 

  4. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P.D. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)

    Article  ADS  Google Scholar 

  5. D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009)

    Article  ADS  Google Scholar 

  6. D. Donadio, G. Galli, Nano Lett. 10, 847–851 (2010)

    Article  ADS  Google Scholar 

  7. L. Liu, X. Chen, J. Appl. Phys. 107, 033501 (2010)

    Article  ADS  Google Scholar 

  8. T. Markussen, A.P. Jauho, M. Brandbyge, Phys. Rev. Lett. 103, 055502 (2009)

    Article  ADS  Google Scholar 

  9. P. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009)

    Article  ADS  Google Scholar 

  10. P.N. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Nano Lett. 10, 1120 (2010)

    Article  ADS  Google Scholar 

  11. A.L. Moore, S.K. Saha, R.S. Prasher, L. Shi, Appl. Phys. Lett. 93, 083112 (2008)

    Article  ADS  Google Scholar 

  12. P.G. Murphy, J.E. Moore, Phys. Rev. B 76, 155313 (2007)

    Article  ADS  Google Scholar 

  13. D.H. Santamore, M.C. Cross, Phys. Rev. B 63, 184306 (2001)

    Article  ADS  Google Scholar 

  14. D.H. Santamore, M.C. Cross, Phys. Rev. Lett. 87, 115502 (2001)

    Article  ADS  Google Scholar 

  15. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000)

    Article  ADS  Google Scholar 

  16. H.K. Sdong, E.K. Jeon, M.H. Kim, H. Oh, J.O. Lee, J.J. Kim, H.J. Choi, Nano Lett. 8, 3656 (2008)

    Article  ADS  Google Scholar 

  17. H. Kim, I. Kim, H.J. Choi, W. Kim, Appl. Phys. Lett. 96, 233106 (2010)

    Article  ADS  Google Scholar 

  18. L. Shi, D.Y. Li, C.H. Yu, W.Y. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, J. Heat Transf. 125, 881 (2003)

    Article  Google Scholar 

  19. M.A. Presley, P.R. Christensen, J. Geophys. Res. 102, 6535 (1997)

    Article  ADS  Google Scholar 

  20. J. Callaway, Phys. Rev. 113, 1046 (1959)

    Article  ADS  MATH  Google Scholar 

  21. C.L. Tien, A. Majumdar, F.M. Gerner, Microscale Energy Transport (Taylor & Francis, Washington, 1998)

    Google Scholar 

  22. O. Yamashita, N. Sadatomi, J. Appl. Phys. 88, 245–251 (2000)

    Article  ADS  Google Scholar 

  23. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, J. Appl. Phys. 107, 094308 (2010)

    Article  ADS  Google Scholar 

  24. C.B. Vining, J. Appl. Phys. 69, 331 (1991)

    Article  ADS  Google Scholar 

  25. B. Abeles, Phys. Rev. 131, 1906 (1963)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Park, YH., Kim, I. et al. Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−x Ge x nanowires. Appl. Phys. A 104, 23–28 (2011). https://doi.org/10.1007/s00339-011-6475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6475-0

Keywords

Navigation