Skip to main content
Log in

Thermal Conductivity Suppression in Nanostructured Silicon and Germanium Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The inherent low lattice thermal conductivity (TC) of semiconductor nanowires (s-NW) due to one-dimensional phonon confinement might provide a solution for the long-lasting figure-of-merit problem for highly efficient thermoelectric (TE) applications. Standalone diameter modulation or alloying of s-NW serve as a toolkit for TC control, but realizing the full potential of nanowires requires new atomic-scale designs, growth, characterization, and understanding of the physical mechanisms behind the structure–property (TC) relationship. Before undertaking time-consuming and expensive experimental work, molecular dynamics (MD) simulations serve as an excellent probe to investigate new designs and understand how nanostructures affect thermal transport properties through their capability to capture various phenomena such as phonon boundary scattering, phonon coherence resonance, and phonon backscattering. On the other hand, because different research groups use different structural and MD parameters in their simulations, it is rather difficult to make comparisons between different nanostructures and select appropriate ones for potential TE applications. Therefore, in this work, we systematically investigated pristine, core–shell (C–S), holey (H-N), superlattice (SL), sawtooth (ST), and superlattice sawtooth (SL-ST) nanowires with identical structural parameters. Specifically, we aim to compare the relative TC reduction achieved by these nanostructures with respect to pristine nanowires in order to propose the best structural design with the lowest lattice TC, using Green–Kubo method-based equilibrium molecular dynamics simulations at 300 K. Our results show that the TC can be minimized by changing specific parameters such as the core diameter and monolayer separation for C–S, H-N, and ST structures. In the case of SL structures, the TC is found to be independent of these parameters. However, surface roughness in the form of a ST morphology provides a TC value below 2 W/m-K, approaching the amorphous limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Di Salvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. L. Liu, N. J. Phys. 16, 123019 (2014).

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  4. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe and B. Raton (Boca Raton: CRC Press, 1995).

    Google Scholar 

  5. H. Sevincli, C. Sevik, T. Cagin, and G. Cuniberti, Sci. Rep. 3, 5 (2013).

    Google Scholar 

  6. L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett. 95, 063102 (2009).

  7. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  8. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  9. D.Y. Li, Y.Y. Wu, P. Kim, L. Shi, P.D. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  Google Scholar 

  10. D.Y. Li, Y. Wu, R. Fan, P.D. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).

    Article  Google Scholar 

  11. E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, A. Majumdar, C. Yu, B.L. Choi, J.M. Kim, and K. Kim, Nano Lett 12, 2918 (2012).

    Article  Google Scholar 

  12. L.X. Jun, Z. Ghang, P.Q. Xiang, and Z.Y. Wei, Sci. Chin. Tech. Sci. 57 (2014)

  13. T. Zhang, S.-l. Wu, R.-T. Zheng, and G.-A. Cheng, Nanotechnology 24 (2013).

  14. Y. Li, K. Buddharaju, N. Singh, G.Q. Lo, and S.J. Lee, IEEE Electron Dev. Lett. 32, 674 (2011).

    Article  Google Scholar 

  15. J. Chen, G. Zhang, and B.W. Li, J. Chem. Phys. 135, 8 (2011).

    Article  Google Scholar 

  16. A.L. Moore, S.K. Saha, R.S. Prasher, and L. Shi, Appl. Phys. Lett. 93, 3 (2008).

    Article  Google Scholar 

  17. G. Zhang and Y.-W. Zhang, Phys. Status Solidi Rapid Res. Lett. 7, 754 (2013).

    Article  Google Scholar 

  18. S. Sarikurt, C. Sevik, A. Kinaci, J.B. Haskins, and T. Cagin, Materials Research Society Symposium Proceedings (2015).

  19. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  20. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  Google Scholar 

  21. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  Google Scholar 

  22. A. Kinaci, J.B. Haskins, and T. Cagin, J. Chem. Phys. 137, 014106 (2012).

    Article  Google Scholar 

  23. A. Kinaci, J.B. Haskins, C. Sevik, and T. Cagin, Phys. Rev. B 86, 115410 (2012).

    Article  Google Scholar 

  24. C. Sevik, A. Kinaci, J.B. Haskins, and T. Cagin, Phys. Rev. B 86, 075403 (2012).

    Article  Google Scholar 

  25. J.B. Haskins, A. Kinaci, C. Sevik, and T.R. Cagin, J. Chem. Phys. 140 (2014).

  26. J.H. Lee, G.A. Galli, and J.C. Grossman, Nano Lett. 8, 3750 (2008).

    Article  Google Scholar 

  27. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  Google Scholar 

  28. F. Sansoz, Nano Lett. 11, 5378 (2011).

    Article  Google Scholar 

  29. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Moench, O.G. Ch Deneke, J.M. Schmidt, S. Rampnoux, M. Wang, A. Plissonnier, S.Dilhaire Rastelli, and N. Mingo, Nat. Mater. 9, 491 (2010).

    Article  Google Scholar 

  30. M. Hu and D. Poulikakos, Nano Lett. 12, 5487–5494 (2012).

    Article  Google Scholar 

  31. B. Becker, P.K. Schelling, and S.R. Phillpot, J. Appl. Phys. 99, 123715 (2006).

    Article  Google Scholar 

  32. S. Volz, J.B. Saulnier, G. Chen, and P. Beauchamp, Microelectron. J. 31, 815–819 (2000).

    Article  Google Scholar 

  33. K. Hippalgaonkar, R. Chen, B. Budaev, J. Tang, S. Andrews, P. Murphy, S. Mukerjee, J. Moore, and P. Yang, APS March Meeting, March 16–20 (2009)

  34. D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 6077 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayberk Özden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özden, A., Kandemir, A., Ay, F. et al. Thermal Conductivity Suppression in Nanostructured Silicon and Germanium Nanowires. J. Electron. Mater. 45, 1594–1600 (2016). https://doi.org/10.1007/s11664-015-4127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4127-4

Keywords

Navigation