Skip to main content
Log in

Effect of the excimer laser irradiation on sol–gel derived tungsten–titanium dioxide thin films

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel technique based on the excimer laser induced crystallization and modification of TiO2 thin films is being reported. W+6 ions loaded TiO2 (WTO) precursor films were prepared by a modified sol–gel method and spin-coated onto microscopic glass slides. Pulsed KrF (248 nm, 13 ns) excimer laser was used to irradiate the WTO amorphous films at various laser parameters. Mesoporous and nanostructured films consisting of anatase and rutile were obtained after laser irradiation at room temperature. The effect of varying W+6 ions concentrations on structural and optical properties the WTO films was analyzed by X-ray diffraction, field-emission scanning electron microscope, UV-Vis spectrophotometer and transmission electron microscope before and after laser treatment. Films irradiated for 10 pulses at 65–75 mJ/cm2 laser fluence, exhibited anatase whereas higher parameters promoted the formation of rutile. XPS results revealed WO3 along with minor proportion of WO2 compounds after laser irradiation. Photo-absorbance of the WTO films was increased with increase in W+6 ions concentration in the film. TEM results exhibited a crystallite size of 15 nm which was confirmed from SEM results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  2. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  3. T.I.N. Negishi, K. Hashimoto, A. Fujishima, Chem. Lett. 99, 841 (1995)

    Article  Google Scholar 

  4. T.I.Y. Kikushi, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. A, Chem. 106, 51 (1997)

    Article  ADS  Google Scholar 

  5. W.K. Wong, M.A. Malati, Sol. Energy 36, 163 (1986)

    Article  Google Scholar 

  6. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A, Chem. 141, 209 (2001)

    Article  Google Scholar 

  7. A. Rampaul, I.P. Parkin, S.A. O’Neill, J. DeSouza, A. Mills, N. Elliott, Polyhedron 22, 35 (2003)

    Article  Google Scholar 

  8. M.M. Yusuf, H. Imai, H. Hirashima, J. Non-Cryst. Solids 285, 90 (2001)

    Article  ADS  Google Scholar 

  9. H.S. Yun, K. Miyazawa, H.S. Zhou, I. Honma, M. Kuwabara, Adv. Mater. 13, 1377 (2001)

    Article  Google Scholar 

  10. M. Wark, J. Tschirch, O. Bartels, D. Bahnemann, J. Rathouský, Microporous Mesoporous Mater. 84, 247 (2005)

    Article  Google Scholar 

  11. S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chem. Mater. 15, 3326 (2003)

    Article  Google Scholar 

  12. S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Depos. 6, 239 (2000)

    Article  Google Scholar 

  13. T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, H. Takahashi, Acta Mater. 53, 323 (2005)

    Article  Google Scholar 

  14. F. Bosc, A. Ayral, P.-A. Albouy, C. Guizard, Chem. Mater. 15, 2463 (2003)

    Article  Google Scholar 

  15. T. Nakajima, T. Tsuchiya, M. Ichihara, H. Nagai, T. Kumagai, Chem. Mater. 20, 7344 (2008)

    Article  Google Scholar 

  16. D.J. Taylor, B.D. Fabes, J. Non-Cryst. Solids 147–148, 457 (1992)

    Article  Google Scholar 

  17. M.R.S. Castro, E.D. Sam, M. Veith, P.W. Oliveira, Nanotechnology 19, 105704 (2008)

    Article  ADS  Google Scholar 

  18. T. Tsuchiya, A. Watanabe, H. Niino, A. Yabe, I. Yamaguchi, T. Manabe, T. Kumagai, S. Mizuta, Appl. Surf. Sci. 186, 173 (2002)

    Article  ADS  Google Scholar 

  19. T.F. Naokoasakuma, M. Aizawa, M. Toki, H. Imai, H. Hirashima, J. Sol-Gel Sci. Technol. 333, 19 (2000)

    Google Scholar 

  20. Y.F. Joya, Z. Liu, Scr. Mater. 60, 467 (2009)

    Article  Google Scholar 

  21. J.C. Ion, Laser Processing of Engineering Materials, Principles, Procedure and Industrial Application (Elsevier, New York, 2005)

    Google Scholar 

  22. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  23. Y.F. Joya, Z. Liu, J. Optoelectron. Adv. Mater. 12, 589 (2010)

    Google Scholar 

  24. T. Nakajima, T. Tsuchiya, T. Kumagai, J. Solid State Chem. 182, 2560 (2009)

    Article  ADS  Google Scholar 

  25. P. Biloen, G.T. Pott, J. Catal. 30, 169 (1973)

    Article  Google Scholar 

  26. S.F. Ho, S. Contarini, J.W. Rabalais, J. Phys. Chem. 91, 4779 (1987)

    Article  Google Scholar 

  27. J. Riga, C. Tenret-Noël, J.J. Pireaux, R. Caudano, J.J. Verbist, Y. Gobillon, Phys. Scr. 16, 351 (1977)

    Article  ADS  Google Scholar 

  28. R. Nyholm, A. Berndtsson, N. Martensson, J. Phys. C, Solid State Phys. 13, L1091 (1980)

    Article  ADS  Google Scholar 

  29. R. Shannon, Acta Crystallogr., Ser. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  30. A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, J. Electron Spectrosc. Relat. Phenom. 156–158, 172 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir F. Joya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joya, Y.F., Liu, Z. Effect of the excimer laser irradiation on sol–gel derived tungsten–titanium dioxide thin films. Appl. Phys. A 102, 91–97 (2011). https://doi.org/10.1007/s00339-010-6151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6151-9

Keywords

Navigation