Skip to main content
Log in

Combinatorial processing libraries for bulk BiFeO3–PbTiO3 piezoelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A high throughput approach for generating combinatorial libraries with varying processing conditions for bulk ceramics has been developed. This approach utilized the linear temperature gradient in a tube furnace to screen a whole temperature range for optimized preparation. With this approach, the processing of 0.98[0.6BiFeO3–0.4PbTiO3]–0.02Pb(Mg1/3Nb2/3)O3 ceramic powders and pellets for high-temperature piezoelectric applications was demonstrated to identify the best synthesis conditions for phase purity. The dielectric property measurement on the as-processed solid solution ceramics confirmed the high Curie temperature and the improved loss tangent with the Pb(Mg1/3Nb2/3)O3 doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.L. Dar, Macromol. Rapid Commun. 25, 34 (2004)

    Article  Google Scholar 

  2. K. Rajan, Annu. Rev. Mater. Res. 38, 299 (2008)

    Article  ADS  Google Scholar 

  3. W.F. Maier, K. Stowe, S. Sieg, Angew. Chem. Int. Ed. 46, 6016 (2007)

    Article  Google Scholar 

  4. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  ADS  Google Scholar 

  5. D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469 (1998)

    Article  Google Scholar 

  6. C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J. Appl. Phys. 99, 024106 (2006)

    Article  ADS  Google Scholar 

  7. T.P. Comyn, S.P. McBride, A.J. Bell, Mater. Lett. 30, 3844 (2004)

    Article  Google Scholar 

  8. J.R. Cheng, Z.Y. Meng, L.E. Cross, J. Appl. Phys. 98, 084102 (2005)

    Article  ADS  Google Scholar 

  9. S.K. Singh, K. Maruyama, H. Ishiwara, Appl. Phys. Lett. 91, 112913 (2007)

    Article  ADS  Google Scholar 

  10. H. Naganuma, J. Miura, S. Okamura, Appl. Phys. Lett. 93, 052901 (2008)

    Article  ADS  Google Scholar 

  11. Y.K. Jun, S.H. Hong, Solid State Commun. 144, 329 (2007)

    Article  ADS  Google Scholar 

  12. S.M. Selbach, M.A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)

    Article  Google Scholar 

  13. T.T. Carvalho, P.B. Tavares, Mater. Lett. 62, 3984 (2008)

    Article  Google Scholar 

  14. E.C. Subbarao, J. Am. Ceram. Soc. 45, 166 (1962)

    Article  Google Scholar 

  15. W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  ADS  Google Scholar 

  16. V.V.S.S.S. Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10, 1301 (1995)

    Article  ADS  Google Scholar 

  17. W.M. Zhu, Z.G. Ye, Ceram. Int. 30, 1435 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Tan, X. & Rajan, K. Combinatorial processing libraries for bulk BiFeO3–PbTiO3 piezoelectric ceramics. Appl. Phys. A 99, 427–431 (2010). https://doi.org/10.1007/s00339-010-5574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5574-7

Keywords

Navigation