Skip to main content
Log in

Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Cormany, P. Enoksson, G. Stemme, J. Micromech. Microeng. 8, 84 (1998)

    Article  ADS  Google Scholar 

  2. S.W. Youn, C.G. Kang, Scr. Mater. 52, 117 (2005)

    Article  Google Scholar 

  3. X. Li, T. Abe, M. Esashi, Sens. Actuators A 87, 139 (2001)

    Article  Google Scholar 

  4. M.J. Madou, Fundamentals of Microfabrication, 2nd edn. (CRC Press, New York, 2002), p. 590

    Google Scholar 

  5. K. Zimmer, A. Braun, R. Böhme, Appl. Surf. Sci. 208–209, 199 (2003)

    Article  Google Scholar 

  6. A. Ben-Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, J. Phys. D 40, 1447 (2007)

    Article  ADS  Google Scholar 

  7. Y. Hanada, K. Sugioka, H. Kawano, I.S. Ishikawa, A. Miyawaki, K. Midorikawa, Biomed. Microdevies 10, 403 (2008)

    Article  Google Scholar 

  8. J. Zhao, J. Sullivan, T.D. Bennett, Appl. Surf. Sci. 225, 250 (2004)

    Article  ADS  Google Scholar 

  9. G. Allcock, P.E. Dyer, G. Elliner, H.V. Snelling, J. Appl. Phys. 78, 7295 (1995)

    Article  ADS  Google Scholar 

  10. A. Kruusing, Opt. Lasers Eng. 41, 329 (2004)

    Article  Google Scholar 

  11. C.K. Chung, Y.C. Sung, G.R. Huang, E.J. Hsiao, W.H. Lin, S.L. Lin, Appl. Phys. A 94, 927 (2009)

    Article  ADS  Google Scholar 

  12. A. Kruusing, Opt. Lasers Eng. 41, 307 (2004)

    Article  Google Scholar 

  13. R.E. Mueller, J. Bird, W.W. Duley, J. Appl. Phys. 71, 551 (1992)

    Article  ADS  Google Scholar 

  14. G.A. Shafeev, A.V. Simakhin, Appl. Phys. A 54, 311 (1992)

    Article  ADS  Google Scholar 

  15. G.A. Shafeev, A.V. Simakhin, Laser Phys. 4, 631 (1994)

    Google Scholar 

  16. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 105, 5114 (2001)

    Article  Google Scholar 

  17. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  18. Deborah D. L. Chung, Materials for Electronic Packaging (1995), p. 218

  19. C.K. Chung, M.Y. Wu, Opt. Express 15, 7269 (2007)

    Article  ADS  Google Scholar 

  20. http://chemicalland21.com/specialtychem/perchem/LAURAMIDOPROPYL%20BETAINE.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, C.K., Liao, M.W. & Lin, S.L. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing. Appl. Phys. A 99, 285–290 (2010). https://doi.org/10.1007/s00339-009-5522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5522-6

Keywords

Navigation