Skip to main content
Log in

Laser etching technique using bubble jet impact for glass substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a new laser etching technique using bubble jet impact for glass substrates. An Nd:YAG laser is applied to the backside of the substrate which is partially submerged in water. A metal plate is placed below the glass substrate. The metal vaporizes the water and generates a turbulent bubble flow. The bubble nozzle is proposed to enhance the impact of the bubble jet. The glass surface will first be softened, and then expelled by the shock wave resulting from the jet impact. The phenomena of bubble nucleation, growth, collapse, and jet impact were studied in this paper. The formation of the etching cavity can be divided into three types: double-petal, triple-petal, and four-petal. The etching pits expanded and combined to form a complete cavity. The needed laser power does not exceed 5 W. The proposed laser etching method was successfully demonstrated for etching a cavity of 5–20 µm in depth and 50–250 µm in diameter. The bubble jet of the small nozzle diameter is well concentrated, creating a strong jet impact on the glass surface. A greater nozzle depth can enhance the impact of the bubble jet. The proposed etching technique has great potential to provide an improved solution for the micro-machining of glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Chen, J. Chuang, G.S. Mathad, U.S. Patent 4,478,677 (1984)

  2. J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992)

    Article  ADS  Google Scholar 

  3. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 111 (1999)

    Article  ADS  Google Scholar 

  4. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 69, S271 (1999)

    Article  ADS  Google Scholar 

  5. K. Zimmer, A. Braun, R. Böhme, Appl. Surf. Sci. 208–209, 199 (2003)

    Article  Google Scholar 

  6. Z.Q. Huang, M.H. Hong, K.S. Tiaw, Q.Y. Lin, J. Laser Micro Nanoeng. 2, 194 (2007)

    Article  Google Scholar 

  7. G. Kopitkovas, T. Lippert, J. Venturini, C. David, A. Wokaun, J. Phys: Conf. Ser. 59, 526 (2007)

    ADS  Google Scholar 

  8. K. Zimmer, R. Böhme, Laser Chem. 2008, 1 (2008)

    Article  Google Scholar 

  9. K. Zimmer, M. Ehrhardt, R. Böhme, J. Appl. Phys. 107(1–8), 034908 (2010)

    Article  ADS  Google Scholar 

  10. B. Hopp, C. Vass, T. Smausz, Z. Bor, J. Phys. D Appl. Phys. 39, 4843 (2006)

    Article  ADS  Google Scholar 

  11. B. Hopp, T. Smausz, C. Vass, G. Szabó, R. Böhme, D. Hirsch, K. Zimmer, Appl. Phys. A 94, 899 (2009)

    Article  ADS  Google Scholar 

  12. T. Smausz, T. Csizmadia, N. Kresz, C. Vass, Z. Márton, B. Hopp, Appl. Surf. Sci. 254, 1091 (2007)

    Article  ADS  Google Scholar 

  13. D.P. Banks, K.S. Kaur, R.W. Eason, Appl. Surf. Sci. 255, 8343 (2009)

    Article  ADS  Google Scholar 

  14. K. Zimmer, R. Böhme, C. Vass, B. Hopp, Appl. Surf. Sci. 255, 9617 (2009)

    Article  ADS  Google Scholar 

  15. Z. Tóth, M. Bereznai, K. Piglmayer, Appl. Surf. Sci. 208, 205–209 (2003)

    Article  ADS  Google Scholar 

  16. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84, 47 (2006)

    Article  ADS  Google Scholar 

  17. O. Yavas, A. Schilling, J. Bischof, J. Boneberg, P. Leiderer, Appl. Phys. A 64, 331 (1997)

    Article  ADS  Google Scholar 

  18. Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748 (2001)

    Article  Google Scholar 

  19. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B At. Spectrosc. 82, 42 (2013)

    Article  ADS  Google Scholar 

  20. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B At. Spectrosc. 82, 50 (2013)

    Article  ADS  Google Scholar 

  21. A. Takamizawa, S. Kajimoto, J. Hobley, K. Hatanaka, K. Ohta, H. Fukumura, Phys. Chem. Chem. Phys. 5, 888 (2003)

    Article  Google Scholar 

  22. A. Nath, A. Khare, Laser Part. Beams 29, 1 (2011)

    Article  ADS  Google Scholar 

  23. E.A. Brujan, K. Nahen, P. Schmidt, A. Vogel, J. Fluid Mech. 433, 251 (2001)

    Article  ADS  MATH  Google Scholar 

  24. E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, Phys. Fluids 14, 85 (2002)

    Article  ADS  Google Scholar 

  25. B. Wolfrum, T. Kurz, R. Mettin, W. Lauterborn, Phys. Fluids 15, 2916 (2003)

    Article  ADS  Google Scholar 

  26. L.W. Chew, E. Klaseboer, S.W. Ohl, B.C. Khoo, Exp. Therm. Fluid Sci. 44, 108 (2013)

    Article  Google Scholar 

  27. B.C. Khoo, E. Klaseboer, K.C. Hung, Sens. Actuators, A 118, 152 (2005)

    Article  Google Scholar 

  28. K.S.F. Lew, E. Klaseboer, B.C. Khoo, Sens. Actuators, A 133, 161 (2007)

    Article  Google Scholar 

  29. V. Lazic, S. Jovicevic, M. Carpanese, Appl. Phys. Lett. 101, 054101 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this research by the National Science Council (Taiwan) under Grant NSC 102-2221-E-211-001 to Huafan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwan-Huei Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, TS., Tsai, CH. Laser etching technique using bubble jet impact for glass substrates. Appl. Phys. A 118, 1501–1508 (2015). https://doi.org/10.1007/s00339-014-8916-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8916-z

Keywords

Navigation