Skip to main content

Laser-Induced Plasma-Assisted Ablation (LIPAA) of Transparent Materials

  • Conference paper
  • First Online:
Low Cost Manufacturing Technologies (NERC 2022)

Abstract

An overview of the significance of microchannels and transparent materials in many scientific and industrial applications is given in this chapter. The importance of laser machining of transparent materials is also presented, followed by a comprehensive discussion on laser-induced plasma-assisted ablation (LIPAA) process in terms of its types, laser process parameters and workpiece materials. The current study also presents the effective fabrication of microchannels on polycarbonate (PC) by LIPAA using a conventional millisecond Nd: YAG laser and copper as the target metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan C, Chen K, Liu B, Ren L, Wang J, Hu Q, Liang L, Zhou J, Jiang L (2017) Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol 240:314–323

    Article  Google Scholar 

  2. Xu S, Liu B, Pan C, Ren L, Tang B, Hu Q, Jiang L (2017) Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J Mater Process Technol 247:204–213

    Article  Google Scholar 

  3. Kim HG, Park MS (2017) Circuit patterning using laser on transparent material. Surf Coat Technol 315:377–384

    Article  Google Scholar 

  4. Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pim-plapure MS (2018) A review on microreactors: reactor fabrication, design, and cut-ting-edge applications. Chem Eng Sci 189:431–448

    Article  Google Scholar 

  5. Nieto D, Delgado T, Flores-Arias MT (2014) Fabrication of microchannels on soda-lime glass substrates with a Nd: YVO4 laser. Opt Lasers Eng 63:11–18. https://doi.org/10.1016/j.optlaseng.2014.06.005

    Article  Google Scholar 

  6. Singh SS, Baruah PK, Khare A, Joshi SN (2018) Incubation studies and the threshold for surface damage and cavity formation in the processing of polycarbonate by Nd: YAG laser. Opt Laser Technol 108:592–601

    Article  Google Scholar 

  7. Kim KR, Kim HJ, Choi HI, Shin KS, Cho SH, Choi BD (2015) Ultrafast laser microfabrication of a trapping device for colorectal cancer cells. Microelectron Eng 140:1–5

    Article  Google Scholar 

  8. Li G, Xu S (2015) Small diameter microchannel of PDMS and complex three-dimensional microchannel network. Mater Des 81:82–86

    Article  Google Scholar 

  9. Prakash S, Kumar S (2017) Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt Laser Technol 94:180–192

    Article  Google Scholar 

  10. Hwang J, Cho YH, Park MS, Kim BH (2019) Microchannel fabrication on glass materials for microfluidic devices. Int J Precis Eng Manuf 20(3):479–495

    Article  Google Scholar 

  11. Hnatovsky C, Taylor RS, Simova E, Rajeev PP, Rayner DM, Bhardwaj VR, Corkum PB (2006) Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl Phys A 84(1):47–61

    Article  Google Scholar 

  12. Rodriguez I, Spicar-Mihalic P, Kuyper CL, Fiorini GS, Chiu DT (2003) Rapid prototyping of glass microchannels. Anal Chim Acta 496(1–2):205–215

    Article  Google Scholar 

  13. Chen X, Hu Z (2017) An effective method for fabricating microchannels on the polycarbonate (PC) substrate with CO laser. Int J Adv Manuf Technol 92

    Google Scholar 

  14. Qi H, Chen T, Yao L, Zuo T (2009) Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Opt Lasers Eng 47(5):594–598

    Article  Google Scholar 

  15. Kanca Y, Milner P, Dini D, Amis AA (2018) Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. J Mech Behav Biomed Mater 82:394–402

    Article  Google Scholar 

  16. Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914

    Article  Google Scholar 

  17. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576

    Article  Google Scholar 

  18. Day D, Gu M (2005) Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. Opt Express 13(16):5939–5946

    Article  Google Scholar 

  19. Dudala S, Rao LT, Dubey SK, Javed A, Goel S (2020) Experimental characterization to fabricate CO2 laser ablated PMMA microchannel with homogeneous surface. Mater Today: Proc 28:804–807

    Google Scholar 

  20. Prakash S, Kumar S (2015) Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: an experimental investigation. Int J Precis Eng Manuf 16(2):361–366

    Google Scholar 

  21. Li JM, Liu C, Dai XD, Chen HH, Liang Y, Sun HL, Tian H, Ding XP (2008) PMMA microfluidic devices with three-dimensional features for blood cell filtration. J Micromech Microeng 18(9):095021

    Article  Google Scholar 

  22. Nguyen T, Jung SH, Lee MS, Park TE, Ahn SK, Kang JH (2019) Robust chemical bonding of PMMA microfluidic devices to porous PETE membranes for reliable cytotoxicity testing of drugs. Lab Chip 19(21):3706–3713

    Article  Google Scholar 

  23. Majumdar JD, Manna I (2003) Laser processing of materials. Sadhana 28(3):495–562

    Article  Google Scholar 

  24. Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media

    Google Scholar 

  25. Mishra I, Lattanzi AM, LaMarche CQ, Morris AB, Hrenya CM (2019) Experimental validation of indirect conduction theory and effect of particle roughness on wall-to-particle heat transfer. AIChE J 65(10):e16703

    Article  Google Scholar 

  26. Lawrence J (2002) A comparative investigation of the efficacy of CO2 and high-power diode lasers for the forming of EN3 mild steel sheets. Proc Inst Mech Eng Part B: J Eng Manuf 216(11):1481–1491

    Article  Google Scholar 

  27. Chang TL, Chen ZC, Lee YW, Li YH, Wang CP (2016) Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels. Microelectron Eng 158:95–101

    Article  Google Scholar 

  28. Bejan A, Kraus AD (eds) (2003) Heat transfer handbook, vol 1. John Wiley & Sons

    Google Scholar 

  29. Hu Z, Kovacevic R, Labudovic M (2002) Experimental and numerical modeling of buckling instability of laser sheet forming. Int J Mach Tools Manuf 42(13):1427–1439

    Article  Google Scholar 

  30. Benton M, Hossan MR, Konari PR, Gamagedara S (2019) Effect of process parameters and material properties on laser micromachining of microchannels. Micromachines 10(2):123

    Article  Google Scholar 

  31. Guan Y, Sun S, Zhao G, Luan Y (2005) Influence of material properties on the laser-forming process of sheet metals. J Mater Process Technol 167(1):124–131

    Article  Google Scholar 

  32. Zimmer K, Böhme R (2008) Laser-induced backside wet etching of transparent materials with organic and metallic absorbers. Laser Chem

    Google Scholar 

  33. Ehrhardt M, Lorenz P, Zimmer K (2012) Surface modification by laser etching using a surface-adsorbed layer. Thin Solid Films 520(9):3629–3633

    Article  Google Scholar 

  34. Hopp B, Vass C, Smausz T (2007) Laser induced backside dry etching of transparent materials. Appl Surf Sci 253(19):7922–7925

    Article  Google Scholar 

  35. Ding X, Kawaguchi Y, Sato T, Narazaki A, Kurosaki R, Niino H (2004) Micron-and submicron-sized surface patterning of silica glass by LIBWE method. J Photochem Photobiol, A 166(1–3):129–133

    Article  Google Scholar 

  36. Böhme R, Zimmer K (2004) Low roughness laser etching of fused silica using an adsorbed layer. Appl Surf Sci 239(1):109–116

    Article  Google Scholar 

  37. Sarma U, Joshi SN (2020) Machining of micro-channels on polycarbonate by using laser-induced plasma assisted ablation (LIPAA). Opt Laser Technol 128:106257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna Nandkishor Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarma, U., Joshi, S.N. (2023). Laser-Induced Plasma-Assisted Ablation (LIPAA) of Transparent Materials. In: Joshi, S.N., Dixit, U.S., Mittal, R.K., Bag, S. (eds) Low Cost Manufacturing Technologies. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-19-8452-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8452-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8451-8

  • Online ISBN: 978-981-19-8452-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics