Skip to main content
Log in

Enhanced single-fundamental LP01 mode operation of 650-nm GaAs-based GaInP/AlGaInP quantum-well VCSELs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Minimal optical attenuation of plastic (polymer) optical fibres (POFs) corresponds to the 650-nm wavelength. Currently the GaInP/AlGaInP quantum-well (QW) oxide-confined (OC) vertical-cavity surface-emitting diode lasers (VCSELs) are undoubtedly the laser devices most suited to be used in 650-nm POF optical communication, for which the stable single-fundamental-mode LP01 emission (SFM) is definitely the one most desired. In the present paper, the comprehensive fully self-consistent VCSEL model is used to examine mode selectivity of the above VCSELs. An increase in the VCSEL active-region diameter leads to a gradual modification of the current injection into this region and subsequent carrier radial diffusion within it before their recombination, which is followed by an essential transformation of active-region optical-gain profiles deciding upon an excitation of successive transverse modes. In standard arsenide OC VCSELs, SFM operation is usually limited to relatively small active regions. But for a room-temperature continuous-wave operation of the GaInP/AlGaInP VCSELs, the fundamental LP01 mode remains surprisingly the lowest-threshold one up to relatively large active regions of 9-µm diameters. Nevertheless, in such VCSELs, thresholds of many LP modes become very similar to one another, which leads to their relatively poor mode selectivity and an unwanted multi-mode operation for higher output powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FibreSystems Europe/Ligthwave Europe 1, 11 (June 2004)

  2. FibreSystems Europe/Ligthwave Europe 2, 25 (July/August 2005)

  3. K. Ohdoko, T. Ishigure, Y. Koike, IEEE Photonics Technol. Lett. 17, 79 (2005)

    Article  ADS  Google Scholar 

  4. A. Knigge, M. Zorn, J. Sebastian, K. Vogel, H. Wenzel, M. Weyers, G. Tränkle, IEE Proc., Optoelectron. 150, 110 (2003)

    Article  Google Scholar 

  5. Ł. Piskorski, R.P. Sarzała, W. Nakwaski, Semicond. Sci. Technol. 22, 593 (2007)

    Article  ADS  Google Scholar 

  6. R.P. Sarzała, W. Nakwaski, J. Phys., Condens. Matter 16, S3121 (2004)

    Article  ADS  Google Scholar 

  7. H. Wenzel, H.-J. Wünsche, IEEE J. Quantum Electron. 33, 1156 (1997)

    Article  ADS  Google Scholar 

  8. W.W. Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, G.R. Hadley, IEEE J. Quantum Electron. 33, 1810 (1997)

    Article  ADS  Google Scholar 

  9. A.T. Meney, A.D. Prins, A.F. Phillips, J.L. Sly, E.P. O’Reilly, D.J. Dunstan, A.R. Adams, A. Valster, IEEE J. Sel. Top. Quantum Electron. 1, 697 (1995)

    Article  Google Scholar 

  10. G. Knowles, S.J. Sweeney, T. Sale, IEE Proc., Optoelectron. 148, 55 (2001)

    Article  Google Scholar 

  11. D.P. Bour, D.W. Treat, R.L. Thornton, R.S. Geels, D.F. Welch, IEEE J. Quantum Electron. 29, 1337 (1993)

    Article  ADS  Google Scholar 

  12. M.R. Brown, R.J. Cobley, K.S. Teng, P. Rees, S.P. Wilks, A. Sobiesierski, P.M. Smowton, P. Blood, J. Appl. Phys. 100, 084509 (2006)

    Article  ADS  Google Scholar 

  13. G. Knowles, S.J. Sweeney, T.E. Sale, A.R. Adams, IEE Proc., Optoelectron. 148, 256 (2001)

    Article  Google Scholar 

  14. W. Nakwaski, M. Osiński, IEEE J. Quantum Electron. 29, 1981 (1993)

    Article  ADS  Google Scholar 

  15. T. Kato, T. Matsumoto, T. Ishida, Jpn. J. Appl. Phys. 19, 2367 (1980)

    Article  ADS  Google Scholar 

  16. M. Ikeda, K. Kaneko, J. Appl. Phys. 66, 5285 (1989)

    Article  ADS  Google Scholar 

  17. O. Madelung (ed.), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. New Series, Group III, vol. 17a. (Springer, New York, 1996)

    Google Scholar 

  18. R. Kúdela, J. Novák, M. Kučera, J. Electron. Mater. 26, 7 (1997)

    Article  Google Scholar 

  19. M. Yin, P.M. Smowton, P. Blood, B. McAuley, C.C. Button, Solid-State Electron. 45, 447 (2001)

    Article  ADS  Google Scholar 

  20. Z.Z. Sun, S.F. Yoon, W.K. Lokke, J. Cryst. Growth 235, 8 (2002)

    Article  ADS  Google Scholar 

  21. J.R. Dong, J.H. Teng, S.J. Chua, B.C. Foo, Y.J. Wang, H.R. Yuan, S. Yuan, Appl. Phys. Lett. 83, 596 (2003)

    Article  ADS  Google Scholar 

  22. A. Amith, I. Kudman, E.F. Steigmeier, Phys. Rev. 138, A1270 (1965)

    Article  ADS  Google Scholar 

  23. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  24. W. Nakwaski, J. Appl. Phys. 64, 159 (1988)

    Article  ADS  Google Scholar 

  25. M. Guden, J. Piprek, Model. Simul. Mater. Sci. Eng. 4, 349 (1996)

    Article  ADS  Google Scholar 

  26. M. Le Dû, D. Massoubre, J.-C. Harmand, J.L. Oudar, Electron. Lett. 42, 1060 (2006)

    Article  Google Scholar 

  27. S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg, J. Appl. Phys. 87, 7825 (2000)

    Article  ADS  Google Scholar 

  28. P. Rochon, E. Fortin, Phys. Rev. B 12, 5803 (1975)

    Article  ADS  Google Scholar 

  29. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  30. S. Adachi, S. Ozaki, M. Sato, K. Ohtsuka, Jpn. J. Appl. Phys., Part. 1 35, 537 (1996)

    Article  Google Scholar 

  31. H.C. Kuo, J.M. Kuo, Y.C. Wang, C.H. Lin, H. Chen, G.E. Stillman, J. Electron. Mater. 26, 944 (1997)

    Article  ADS  Google Scholar 

  32. W. Nakwaski, Opto-Electron. Rev. 16, 18 (2008)

    Article  ADS  Google Scholar 

  33. R.P. Sarzała, Opt. Appl. 35, 225 (2005)

    Google Scholar 

  34. R.P. Sarzała, Appl. Phys. A 81, 275 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Włodzimierz Nakwaski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskorski, Ł., Sarzała, R.P. & Nakwaski, W. Enhanced single-fundamental LP01 mode operation of 650-nm GaAs-based GaInP/AlGaInP quantum-well VCSELs. Appl. Phys. A 98, 651–657 (2010). https://doi.org/10.1007/s00339-009-5459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5459-9

PACS

Navigation