Skip to main content
Log in

Formation of microtower structures on nanosecond laser ablation of liquid metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the formation of microtower structures, observed on multishot nanosecond laser irradiation of liquid metals (Ga, In, Sn–Pb alloy, Wood’s metal). Ablation in a reactive ambient gas (air, nitrogen, sulfur hexafluoride, nitrogen trifluoride) is shown to lead to a tower-like structure growing on the irradiated surface at a rate of 3–20 μm per pulse depending on laser fluence and the types of metal and ambient gas. The interplay between different processes in the heat-affected zone of the irradiated samples is analyzed, including ablation, thermal expansion, temperature variations of viscosity, surface tension, thermal stresses, capillary effects, and surface chemistry. A clear picture of microtower origin has been established, and qualitative modeling can explain the formation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  2. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  3. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002)

    Article  Google Scholar 

  4. A. Semerok, P. Mauchien, Rev. Laser Eng. 33, 530 (2005)

    Google Scholar 

  5. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  6. O. Varlamova, F. Costacke, M. Ratzke, J. Reif, Appl. Surf. Sci. 253, 7932 (2007)

    Article  ADS  Google Scholar 

  7. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 104, 063523 (2008)

    Article  ADS  Google Scholar 

  8. T.-H. Her, R.J. Finlay, C. Wu, E. Mazur, Appl. Phys. A 70, 383 (2000)

    Article  ADS  Google Scholar 

  9. V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D.G. Papazaglou, I. Zergioti, Appl. Phys. Lett. 88, 081103 (2006)

    Article  ADS  Google Scholar 

  10. E. Skantzakis, V. Zorba, D.G. Papazaglou, I. Zergioti, C. Fotakis, Appl. Surf. Sci. 252, 4462 (2006)

    Article  ADS  Google Scholar 

  11. S.I. Dolgaev, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, G.A. Shafeev, Appl. Phys. A 83, 417 (2006)

    Article  ADS  Google Scholar 

  12. K.V. Kolasinski, Curr. Opin. Solid State Mater. Sci. 11, 76 (2007)

    Article  Google Scholar 

  13. D.G. Georgiev, R.J. Baird, I. Avritsky, G. Auner, G. Newaz, N. Tokranova, Mater. Res. Soc. Symp. Proc. 872, J13.6 (2005)

    Google Scholar 

  14. J. Eizenkop, I. Avritsky, D.G. Georgiev, V. Chaudchary, J. Appl. Phys. 103, 094311 (2008)

    Article  ADS  Google Scholar 

  15. F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)

    Article  ADS  Google Scholar 

  16. Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003)

    Article  ADS  Google Scholar 

  17. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A 94, 221 (2009)

    Article  ADS  Google Scholar 

  18. J.P. Moening, S.S. Thanawala, D.G. Georgiev, Appl. Phys. A 95, 635 (2009)

    Article  ADS  Google Scholar 

  19. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  20. A. Vogel, N. Linz, S. Freidank, G. Paltauf, Phys. Rev. Lett. 100, 038102 (2008)

    Article  ADS  Google Scholar 

  21. J. Sinko, V. Mukundarajan, S. Porter, L. Kodgis, C. Kemp, J. Lassiter, J. Lin, A.V. Pakhomov, Proc. SPIE 6261, 626131 (2006)

    Article  Google Scholar 

  22. T. Götz, M. Stuke, Appl. Phys. A 64, 539 (1997)

    Article  ADS  Google Scholar 

  23. I. Zergioti, M. Stuke, Appl. Phys. A 67, 391 (1998)

    Article  ADS  Google Scholar 

  24. Y. Franghiadakis, C. Fotakis, P. Tzanetakis, Appl. Phys. A 68, 391 (1999)

    Article  ADS  Google Scholar 

  25. M. Kiso, K. Mizuno, J. Suzuki, T. Kabayashi, Appl. Phys. A 74, 139 (2002)

    Article  ADS  Google Scholar 

  26. Z. Tóth, B. Hopp, T. Smausz, Z. Kántor, F. Ignácz, T. Szörényi, Z. Bor, Appl. Surf. Sci. 138–139, 130 (1999)

    Article  Google Scholar 

  27. V. Tarasenko, F. Ljubchenko, A. Panchenko, A. Telminov, A. Fedenev, Publ. Astron. Obs. Belgrade 84, 237 (2008)

    ADS  Google Scholar 

  28. M.V. Kurilova, D.S. Uryupina, N. Morshedian, A.B. Savel’ev, R.V. Volkov, Proc. SPIE 6726, 67261L (2007)

    Article  Google Scholar 

  29. M. Dinescu, P. Verardi, C. Boulmer-Leborgne, C. Gerardi, L. Mirenghi, V. Sandu, Appl. Surf. Sci. 127–129, 559 (1998)

    Article  Google Scholar 

  30. P.J. Potts, A Handbook of Silicate Rock Analysis (Chapman & Hall, London, 1987)

    Google Scholar 

  31. S.I. Anisimov, V.A. Khokhlov, Instabilities in Laser–Matter Interaction (CRC Press, Boca Raton, 1995)

    Google Scholar 

  32. R.W. Messler, Joining of Materials and Structures: From Pragmatic Process to Enabling Technology (Butterworth-Heinemann, Stoneham, 2004)

    Google Scholar 

  33. A.V. Bulgakov, N.M. Bulgakova, Quantum Electron. 29, 433 (1999)

    Article  Google Scholar 

  34. N.M. Bulgakova, A.V. Bulgakov, L.P. Babich, Appl. Phys. A 79, 1323 (2004)

    ADS  Google Scholar 

  35. http://www.efunda.com/materials/elements

  36. V.M. Zolotarev, V.N. Morozov, E.V. Smirnova, Optical Constants for Natural and Technical Media (Khimiya, Leningrad, 1984) (in Russian)

    Google Scholar 

  37. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    ADS  Google Scholar 

  38. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, Orlando, 1998)

    Google Scholar 

  39. J. Bovatsek, A. Tamhankar, R. Patel, N.M. Bulgakova, J. Bonse, Proc. SPIE 7201, 720116 (2009)

    Article  Google Scholar 

  40. N.P. Peksheva, V.M. Strukov, Usp. Khim. 48, 2034 (1979)

    Google Scholar 

  41. S.K.R.S. Sankaranarayanan, S. Ramanathan, Phys. Rev. B 78, 085420 (2008)

    Article  ADS  Google Scholar 

  42. M. Wautelet, Appl. Phys. A 50, 131 (1990)

    Article  ADS  Google Scholar 

  43. B. Dupré, R. Streiff, Oxid Met. 2, 155 (1970)

    Article  Google Scholar 

  44. Y. Macheteau, J. Gillardeau, P. Plurien, J. Oudar, Oxid Met. 4, 141 (1972)

    Article  Google Scholar 

  45. L.G. Petrova, Met. Sci. Heat Treat. 46, 18 (2004)

    Article  Google Scholar 

  46. C.J. Seeton, Tribol. Lett. 22, 67 (2006)

    Article  Google Scholar 

  47. S.C. Hardy, J. Cryst. Growth 71, 602 (1985)

    Article  ADS  Google Scholar 

  48. V.B. Spivakovskii, Analytical Chemistry of Tin (Nauka, Moscow, 1975) (in Russian)

    Google Scholar 

  49. W.D. Bancroft, H.B. Weiser, J. Phys. Chem. 18, 281 (1914)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda M. Bulgakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakova, N.M., Panchenko, A.N., Tel’minov, A.E. et al. Formation of microtower structures on nanosecond laser ablation of liquid metals. Appl. Phys. A 98, 393–400 (2010). https://doi.org/10.1007/s00339-009-5395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5395-8

PACS

Navigation