Abstract
Sputter erosion of materials is among the most important techniques for fabricating advanced thin film coatings. Sputter processes are also of considerable relevance for surface polishing down to an atomic scale, nano-structuring of surfaces as dot and ripple patterns and micro-machining of materials using focused ion beams or reactive ion etching. We present a new, versatile sputter technique utilizing the steady state coverage of a substrate surface with up to 1016 cm−2 of foreign or self atoms simultaneously during sputter erosion by combined ion irradiation and atom deposition. These surfactant atoms (surface active agents) strongly modify the substrate sputter yield on atomic to macroscopic length scales. Depending on the surfactant–substrate combination, the novel technique allows enhanced smoothing of surfaces, the generation of novel surface patterns and nanostructures and the controlled shaping of surfaces on the nanometer scale. We present selected examples of surface morphology evolution, smoothing of surfaces and shaping of surfaces to demonstrate the capabilities of the new surfactant sputtering technique.
Article PDF
References
R. Behrisch, Sputtering by Particle Bombardment (Springer, Berlin, 1981)
R. Behrisch, G. Betz, Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds (Springer, Berlin, 1983)
R. Behrisch, K. Wittmaack, Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications (Springer, Berlin, 1991)
R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, Berlin, 2007)
W. Jacob, J. Roth, in Sputtering by Particle Bombardment, ed. by R. Behrisch, W. Eckstein (Springer, Berlin, 2007), pp. 329–400
I. Yamada, N. Toyoda, Nucl. Instrum. Methods B 241, 589 (2005)
A. Delcorte et al., Anal. Chem. 79, 3673 (2007)
U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513, 1 (2006)
J.S. Colligon, Philos. Trans. R. Soc. Lond. A 362, 103 (2004)
T.L. Hu et al., J. Electron. Mater. 36, 81 (2007)
Y. Nunes et al., Vacuum 81, 1503 (2007)
S. Inoue, Y. Wada, K. Koterazawa, Vacuum 59, 735 (2000)
D. Herman, J. Sicha, J. Musil, Vacuum 81, 285 (2006)
S. Inoue, T. Namazu, H. Tawa, M. Niibe, K. Koterazawa, Vacuum 80, 744 (2006)
H. Hofsäss, C. Ronning, H. Feldermann, AIP Conf. Proc. 576, 947 (2001)
H. Hofsäss, H. Binder, T. Klumpp, E. Recknagel, Diam. Relat. Mater. 3, 137 (1994)
A. Anders, N. Pasaja, S. Sansongsiri, Rev. Sci. Instrum. 78, 063901 (2007)
P.B. Mirkarimi et al., J. Mater. Res. 9, 2925 (1994)
W. Kulisch, S. Ulrich, Thin Solid Films 423, 183 (2003)
F. Frost, R. Fechner, D. Flamm, B. Ziberi, W. Frank, A. Schindler, Appl. Phys. A 78, 651 (2004)
P.B. Mirkarimi et al., Microelectron. Eng. 77, 369 (2005)
W.L. Chan, E. Chason, J. Appl. Phys. 101, 121301 (2007)
U. Valbusa, C. Boragno, F. Buatier de Mongeot, Mater. Sci. Eng. C 23, 201 (2003)
J. Orloff, M. Utlaut, L. Swanson, High Resolution Focused Ion Beams: FIB and Its Applications (Kluver Academic/Plenum, New York, 2003)
B.A. McClure, D.C. New, U.S. Patent 6586816, 2000
K.L. Hobbs, P.R. Larson, G.D. Lian, J.C. Keay, M.B. Johnson, Nano Lett. 4, 167 (2004)
H. Huang, O.K. Tan, Y.C. Lee, M.S. Tse, J. Guo, T. White, Nanotechnology 17, 3668 (2006)
X.M. Meng, N.G. Shang, C.S. Lee, I. Bello, S.T. Lee, Phys. Status Solidi A 202, 2479 (2005)
J. Fu, J. van Gogh, U.S. Patent 6059945, 1998
S. Berg, I.V. Katardjiev, J. Vac. Sci. Technol. A 17, 1916 (1999)
S. Berg, I. Katardjiev, Surf. Coat. Technol. 84, 353 (1996)
S. Berg, A. Barklund, B. Gelin, C. Nender, I. Katardjiev, J. Vac. Sci. Technol. A 10, 1592 (1992)
J. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM—The Stopping and Ranges of Ions in Solids (SRIM, Chester, 2008). http://srim.org
H. Hofsäss, K. Zhang, U.S. Patent pending, 2007
C.Y. Fong, M.D. Watson, L.H. Yang, S. Ciraci, Model. Simul. Mater. Sci. Eng. 10, R61–R77 (2002)
E. Tournié, K.H. Ploog, Thin Solid Films 231, 43–60 (1993)
S. Habenicht, W. Bolse, K.P. Lieb, Rev. Sci. Instrum. 69, 2120–2126 (1998)
K. Zhang et al., Surf. Coat. Technol. (2008, to be published); presented at SMMIB-15 conference, Mumbai, India, October 2007
Z. Pászti et al., Appl. Phys. A 76, 577–587 (2003)
W. Möller, W. Eckstein, J.P. Biersack, Comput. Phys. Commun. 51, 355 (1988)
K. Zhang et al., New. J. Phys. 9, 29 (2007)
H. Hofsäss, K. Zhang, J. Appl. Phys. 103, 083507 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.