Skip to main content
Log in

Local Seebeck coefficient near the boundary in touching Cu/Bi-Te/Cu composites

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermo-emf ΔV and temperature difference ΔT across the boundary were measured as a function of r for the touching p- and n-type Cu/Bi-Te/Cu composites composed of a combination of tBi-Te=2.0 mm and tCu=0.3 mm, where ΔT is produced by imposing a constant voltage of 1.7 V on two Peltier modules connected in series and r is the distance from the boundary that corresponds to the interval s between two thermocouples. The resultant Seebeck coefficient α across the boundary was obtained from the relation α=ΔV/ΔT. As a result, the resultant α of the touching p- and n-type composites have surprisingly great local maximum values of 1330 and -1140 μV/K at r≈0.03 mm, respectively, and decreased rapidly with an increase of r to approach the Seebeck coefficients of the intrinsic Bi-Te compounds. The resultant maximum α of the touching p- and n-type Cu/Bi-Te/Cu composites are approximately 5.4 and 5.5 times higher in absolute value than those of the intrinsic Bi-Te compounds, respectively. It was thus clarified for the first time that the local Seebeck coefficient is enhanced most strongly in the Bi-Te region where there is an approximately 30-μm distance from the boundary, not at the boundary between Bi-Te compounds and copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964)

    Google Scholar 

  2. M. Bartowiak, G.D. Mahan, Recent Trends in Thermoelectric Materials Research II: Semiconductors and Semimetals, ed. by T.M. Tritt (Academic, New York, 2001), vol. 70, p. 245

  3. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  4. L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993)

    Article  ADS  Google Scholar 

  5. T. Koga, O. Rabin, M.S. Dresselhaus, Phys. Rev. B 62, 16703 (2000)

    Article  ADS  Google Scholar 

  6. R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000)

    Article  ADS  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  8. O. Yamashita, H. Odahara, J. Mater. Sci. 41, 2795 (2006)

    Article  Google Scholar 

  9. J. Tauc, Czech. J. Phys. 3, 282 (1953)

    Article  MATH  ADS  Google Scholar 

  10. I.I. Balmush, Z.M. Dashevsky, A.I. Kasiyan, Semiconductors 29, 937 (1995)

    ADS  Google Scholar 

  11. O. Yamashita, H. Odahara, K. Satou, J. Mater. Sci. 40, 1071 (2005)

    Article  Google Scholar 

  12. O. Yamashita, K. Satou, H. Odahara, S. Tomiyoshi, J. Appl. Phys. 98, 073707 (2005)

    Article  Google Scholar 

  13. H. Odahara, O. Yamashita, K. Satou, S. Tomiyoshi, J. Tani, H. Kido, J. Appl. Phys. 97, 103722 (2005)

    Article  Google Scholar 

  14. O. Yamashita, H. Odahara, J. Mater. Sci. 41, 7437 (2006)

    Article  Google Scholar 

  15. O. Yamashita, S. Tomiyoshi, J. Appl. Phys. 95, 6277 (2004)

    Article  ADS  Google Scholar 

  16. O. Yamashita, S. Tomiyoshi, J. Appl. Phys. 95, 161 (2004)

    Article  ADS  Google Scholar 

  17. W.M. Yim, F.D. Rosi, Solid State Electron. 15, 1121 (1972)

    Article  Google Scholar 

  18. T.C. Harman, J. Appl. Phys. 29, 1373 (1958)

    Article  ADS  Google Scholar 

  19. O. Yamashita, S. Tomiyoshi, Japan. J. Appl. Phys. 42, 492 (2003)

    Article  Google Scholar 

  20. O. Yamashita, H. Odahara, J. Appl. Phys. 99, 123721 (2006)

    Article  ADS  Google Scholar 

  21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  22. G.D. Mahan, M. Bartkowiak, Appl. Phys. Lett. 74, 953 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yamashita.

Additional information

PACS

72.15.Jf; 84.60.Rb; 85.30De

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, O., Odahara, H. Local Seebeck coefficient near the boundary in touching Cu/Bi-Te/Cu composites. Appl. Phys. A 87, 661–666 (2007). https://doi.org/10.1007/s00339-007-3888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3888-x

Keywords

Navigation