Advertisement

Applied Physics A

, Volume 82, Issue 2, pp 253–260 | Cite as

Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

  • F. Junghans
  • M. Morawietz
  • U. Conrad
  • T. Scheibel
  • A. Heilmann
  • U. SpohnEmail author
Article

Abstract

Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation.

The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

Keywords

Atomic Force Microscopy Ionic Liquid Quartz Crystal Microbalance HFIP Silk Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Zool. Sci. 22:273CrossRefPubMedGoogle Scholar
  2. 2.
    Pérez-Rigueiro J, Elices M, Guinea GV (2003) Polymer 44:3733CrossRefGoogle Scholar
  3. 3.
    Vollrath F (2000) Mol. Biotechn. 74:67CrossRefGoogle Scholar
  4. 4.
    Shao Z, Vollrath F (2002) Nature 418:741CrossRefPubMedADSGoogle Scholar
  5. 5.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Biomaterials 24:401CrossRefPubMedGoogle Scholar
  6. 6.
    Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y (1995) J. Biomed. Mater. Res. 29:1215CrossRefPubMedGoogle Scholar
  7. 7.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) J. Biomed. Mater. Res. 54:139CrossRefPubMedGoogle Scholar
  8. 8.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Biomaterials 23:4131CrossRefPubMedGoogle Scholar
  9. 9.
    Meinel L, Hoffmann S, Karageorgiou V, Zichner L, Langer R, Kaplan DL (2004) Biotechnol. Bioeng. 88:379CrossRefPubMedGoogle Scholar
  10. 10.
    Meinel L, Karageorgiou V, Hoffmann S, Fajardo R, Snyder B, Li L, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) J. Biomed. Mater. Res. 71A:25CrossRefGoogle Scholar
  11. 11.
    Karageorgiou V, Meinel L, Hoffmann S, Malhotra A, Voloch V, Kaplan DL (2004) J. Biomed. Mater. Res. 71A:528CrossRefGoogle Scholar
  12. 12.
    J. Rosenbloom, W.R. Abrams, R. Mecham, Faseb J, 7:1208 (1993)Google Scholar
  13. 13.
    Scheller J, Henggeler D, Viviani A, Conrad U (2004) Transgenic Res. 13:51CrossRefPubMedGoogle Scholar
  14. 14.
    Muller WS, Samuelson LA, Fossey SA, Kaplan DL (1993) Langmuir 9:1857CrossRefGoogle Scholar
  15. 15.
    Putthanarat S, Zarkoop S, Magoshi J, Chen JA, Eby RK, Stone M, Adams WW (2002) Polymer 43:3405CrossRefGoogle Scholar
  16. 16.
    Zhao C, Yao J, Masuda H, Kishore R, Asakura T (2003) Biopolymers 69:253CrossRefPubMedGoogle Scholar
  17. 17.
    Arai T, Freddi G, Innocenti R, Tsukada M (2004) J. Appl. Polym. Sci. 91:2383CrossRefGoogle Scholar
  18. 18.
    Motta A, Fambri L, Migliaresi C (2002) Macromol. Chem. Phys. 203:1658Google Scholar
  19. 19.
    Scheller J, Gührs K-H, Grosse F, Conrad U (2001) Nature Biotechnol. 19:573CrossRefGoogle Scholar
  20. 20.
    J. Scheller, U. Conrad, Molecular Farming. Edited by R. Fischer, S. Schillberg (Wiley-VCH 2004) p. 171Google Scholar
  21. 21.
    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Biochemistry 43:13604PubMedCrossRefGoogle Scholar
  22. 22.
    T. Scheibel, personal communication (2005)Google Scholar
  23. 23.
    Meyer E, Chilkoti A (1999) Nature Biotechnol. 17:1112CrossRefGoogle Scholar
  24. 24.
    Zhou C-Z, Confalonieri F, Jacquet M, Rerasso RP, Li Z-G, Janin J (2001) Proteins 44:119CrossRefPubMedGoogle Scholar
  25. 25.
    Johannsmann D (1999) Macromol. Chem. Phys. 200:501Google Scholar
  26. 26.
    T. Chudoba, Haerte 4.5, Asmec GmbH, Radeberg, Germany (www.asmec.de)Google Scholar
  27. 27.
    Phillips M, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) J. Am. Chem. Soc. 126:14350CrossRefPubMedGoogle Scholar
  28. 28.
    Smith PK, Krohn RI, Hermanson GT, Malla AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal. Biochem. 150:76CrossRefPubMedGoogle Scholar
  29. 29.
    G. Sauerbrey, Arch. Elektrotech. Übertragung 18:617 (1964)Google Scholar
  30. 30.
    Puente Orench I, Putthanarat S, Balta Calleja FJ, Ebby RK, Stone M (2004) Polymer 45:2041CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • F. Junghans
    • 1
  • M. Morawietz
    • 1
  • U. Conrad
    • 2
  • T. Scheibel
    • 3
  • A. Heilmann
    • 1
  • U. Spohn
    • 1
    Email author
  1. 1.Fraunhofer Institute of Mechanics of the MaterialsHalleGermany
  2. 2.Institute of Plant Genetics and Crop Plant ResearchLeibniz InstituteGaterslebenGermany
  3. 3.Department of BiotechnologyTechnical University of MunichGarchingGermany

Personalised recommendations