Skip to main content

Advertisement

Log in

Structural modifications of silicon-implanted GaAs induced by the athermal annealing technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have used high-resolution X-ray diffraction and Raman spectroscopy to investigate structural modifications inside and outside the focal region of Si-implanted GaAs samples that have been irradiated at high power by a focused short-pulse laser. Si atoms implanted into the GaAs matrix generate exciton-induced local lattice expansion, resulting in a satellite on the lower-angle side of the Bragg peak. After the laser pulse irradiation, surface features inside and outside the focal spot suggest the presence of Bernard convection cells, indicating that a rapid melting and re-crystallization has taken place. Moreover, the laser irradiation induces a compressive strain inside the focal spot, since the satellite appears on the higher-angle side of the Bragg peak. The stress maximizes at the center of the focal spot and extends far outside the irradiated area (approximately 2.5-mm away from the bull’s eye), suggesting the propagation of a laser-induced mechanical wave. The maximum compressive stress inside the focal spot corresponds to 2.7 GPa. Raman spectra inside the focal spot resemble that of pristine GaAs, indicating that rapid melting has introduced significant heterogeneity, with zones of high and low Si concentration. X-ray measurements indicate that areas inside the focal spot and annealed areas outside of the focal spot contain overtones of a minor tetragonal distortion of the lattice, consistent with the observed relaxation of Raman selection rules when compared with the parent zinc-blende structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Rao, R.S. Babu, A.K. Berry, H.R. Dietrich, N. Bottka: J. Elect. Mater. 19, 789 (1990)

    Article  ADS  Google Scholar 

  2. J. Grun, C.K. Manka, C.A. Hoffman, J.R. Meyer, O.J. Glembocki, R. Kaplan, S.B. Qadri, E.F. Skelton, D.W. Donnelly, B.C. Covington: Phys. Rev. Lett. 78, 1584 (1997)

    Article  ADS  Google Scholar 

  3. D.W. Donnelly, B.C. Covington, J. Grun, C.A. Hoffman, J.R. Meyer, C.K. Manka, O. Glembocki, S.B. Qadri, E.F. Skelton: Appl. Phys. Lett. 71, 680 (1997)

    Article  ADS  Google Scholar 

  4. M. Ichimura, W. Yoshida, A. Usami: J. Electron. Mater. 25, 1088 (1996); T. Hara, T. Muraki, S. Takeda, N. Uchitomi, Y. Kitaura, G.B. Gao: Jap. J. Appl. Phys. 33, L1435 (1994)

    Article  ADS  Google Scholar 

  5. A. Rys, Y. Shieh, A. Compaan, H. Yao, A. Bhat: Opt. Eng. 29, 329 (1990)

    Article  ADS  Google Scholar 

  6. A.P. Singh, A. Kapoor, K.N. Tripathi, G.R. Kumar: Opt. Laser Tech. 33, 363 (200)

    Article  Google Scholar 

  7. S. Chen, S.T. Lee, G. Braunstein, K.Y. Ko, T.Y. Tan: J. Appl. Phys. 70, 656 (1991)

    Article  ADS  Google Scholar 

  8. P.J. Simpson, P.J. Schultz, S.T. Lee, S. Chen, Braunstein: J. Appl. Phys. 72, 1799 (1992)

    Article  ADS  Google Scholar 

  9. F.G. Moore, H.B. Dietrich, E.A. Dobisz, O.W. Holland: Appl. Phys. Lett. 57, 911 (1990)

    Article  ADS  Google Scholar 

  10. N.A.G. Ahmed, C.E. Christodoulides, G. Carter: Rad. Eff. 52, 211 (1980)

    Article  Google Scholar 

  11. T.E. Haynes, R. Morton, S.S. Lau: Appl. Phys. Lett. 64, 991 (1994)

    Article  ADS  Google Scholar 

  12. J. Singh, N. Itoh, Y. Nakai, J. Kanasaki, A. Okano: Phys. Rev. B 50, 11730 (1994)

    Article  ADS  Google Scholar 

  13. L. Vivet, M.F. Barthe, T. Gilbert, B. Dubreulli: J. Appl. Phys. 78, 1 (1995)

    Article  Google Scholar 

  14. V. Craciun, D. Craciun: Appl. Surf. Sci. 109110, 312 (1997)

  15. B.J. Garcia, J. Martinez, J. Piqueras: Appl. Phys. A 51, 437 (1990)

    Article  ADS  Google Scholar 

  16. J. Solis, C.N. Afonso, J. Piqueras: J. Appl. Phys. 71, 1032 (1992)

    Article  ADS  Google Scholar 

  17. Monochromaticity of the X-ray beam is measured by the ratio Δλ/λ. Here λ is the wavelength, Δλ is the FWHM of the incident X-ray wave. Our diffractometer had Δλ/λ≈5×10-4

  18. A.A. Bugaev, B.P. Zakharchenya, M.G. Ivanov, I.A. Merkulov: Sov. Phys. Solid State 28, 836 (1986)

    Google Scholar 

  19. M.V. Rao, J. Brookshire, S. Mitra, S.B. Qadri, R. Fisher, J. Grun, N. Papanicolaou, M. Yousuf, M.C. Ridgway: J. Appl. Phys. 94, 130 (2003)

    Article  ADS  Google Scholar 

  20. S. Goedeckar, T. Deutch, L. Billard: Phys. Rev. Lett. 88, 235501 (2002)

    Article  ADS  Google Scholar 

  21. The unit cell of GaAs is fcc, the space group is F4̄3m. Within the unit cell of this zinc blende structure, Ga atoms are at (000),(01/21/2),(1/201/2) and (1/21/20); and As are at (1/43/43/4),(1/41/41/4),(3/43/41/4) and (3/41/43/4). The nearest neighbor distance is 2.86 Å. Allowed interstitials are of 4 types: [1]. Void1 (Td) at (001/2),(01/20),(1/200) and (1/21/21/2) – nearest neighbor distance=2.86 Å; [2]. Void2 (Td) at (3/41/41/4),(3/43/41/4),(3/43/43/4), (1/41/43/4) and (1/43/41/4) – nearest neighbor distance=2.86 Å; [3]. Void3 (C3V), 16 numbers at (3/83/85/8) and its equivalent positions – nearest neighbor distance=2.74 Å; [4]. Void4 (C2V), 24 numbers at saddle point [(1/41/40), its equivalent positions – nearest neighbor distance=2.33 Å]. The defect structure in GaAs becomes more complex (than in the single-element diamond structure) owing to the antisite feature (differentiating the Ga, As sites), effectively doubling the number of interstitial types

  22. Schottky and Frenkel pairs are the obvious vacancies in GaAs. Divacancies, vacancy lattice and loops are also possible. Added to these are the sinks created by dislocations

  23. M. Toulemonde, C. Dufor, E. Paumier: Phys. Rev. B 46, 14362 (1992)

    Article  ADS  Google Scholar 

  24. G. Vitali, C. Pizzuto, G. Zollo, D. Karpuzov, M. Kalitzova, P. van der Heide, G. Scarmarcio, V. Spagnolo, L. Chiavarone, D. Manno: Phys. Rev. B 59, 2986 (1999)

    Article  ADS  Google Scholar 

  25. V.T. Bublik, S.B. Evgen’ev, A.A. Kalinin, M.G. Mil’vidskii: Krystallografiya 40, 128 (1995)

    Google Scholar 

  26. V.T. Bublik, S.B. Evgen’ev, A.A. Kalinin, M.G. Mil’vidskii, A.V. Nemirovskii, V.B. Ufimtsev: Krystallografiya 42, 360 (1997)

    Google Scholar 

  27. http://scienceworld.wolfram.com/physics/MurnaghanEquation.html

  28. H.J. McSkirmin, A. Jayaraman, P. Andreatch Jr.: J. Appl. Phys. 38, 2362 (1967)

    Article  ADS  Google Scholar 

  29. A. Mooradian: In: Festkörper Probleme IX, Advances in Solid State Physics, ed. by O. Madelung (Pergamon, New York 1969)

  30. R. Loudon: Adv. Phys. 13, 423 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.B. Qadri.

Additional information

PACS

61.72.Vv; 62.50.+p; 71.55.Eq; 79.20.Ds; 81.05.Ea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qadri, S., Yousuf, M., Kendziora, C. et al. Structural modifications of silicon-implanted GaAs induced by the athermal annealing technique. Appl. Phys. A 79, 1971–1977 (2004). https://doi.org/10.1007/s00339-003-2174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2174-9

Keywords

Navigation