Skip to main content

Advertisement

Log in

Cultivable bacteria associated with Caribbean octocorals are active against coral pathogens but exhibit variable bioactivity when grown under different temperature conditions

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Caribbean scleractinian corals have been declining in recent decades while octocorals appear to be thriving. Although microbial communities associated with scleractinians have been extensively studied, less is known about octocoral-associated communities. To investigate whether octocoral-associated microorganisms can provide resistance against coral pathogens, bacteria from the mucus and external surfaces of three common Caribbean octocoral species (Gorgonia ventalina, Eunicea flexuosa, and Antillogorgia americana) were isolated. Isolates were tested for bioactivity against six scleractinian coral pathogens at three temperatures to capture potential differences under varying conditions. Production of bioactive metabolites was evaluated using disk diffusion assays while growth competition assays determined whether the pathogen and isolate could establish simultaneously. Over half of the isolates, members of the phyla Actinobacteria, Firmicutes and Proteobacteria, produced compounds that inhibited the growth of one or more pathogens with some variation in bioactivity noted across temperatures. When inoculated simultaneously, most isolates were able to grow in presence of the pathogens while temperature did not have a significant impact. Collectively, these results demonstrate that octocorals support a diverse group of culturable bacteria capable of competing against coral pathogens. The putative protective roles of these bacteria provide insight into why Caribbean octocorals may be less susceptible to diseases and might explain their increasing prevalence on degraded reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R (2013) Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep. https://doi.org/10.1038/srep03486

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. In: Porter JW (ed) The ecology and etiology of newly emerging marine diseases, 1st edn. Springer, Dordrecht, pp 25–38

    Chapter  Google Scholar 

  • Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  • Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Glob Chang Biol 13:2078–2083

    Article  Google Scholar 

  • Bauer AW (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:149–158

    Article  Google Scholar 

  • Bayer T, Arif C, Ferrier-Pagès C, Zoccola D, Aranda M, Voolstra C (2013) Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar Ecol Prog Ser 479:75–84

    Article  CAS  Google Scholar 

  • Ben-Haim Y, Thompson FL, Thompson CC et al (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot. https://doi.org/10.1038/ja.2005.1

    Article  Google Scholar 

  • Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    Article  CAS  PubMed  Google Scholar 

  • Braun DR, Chevrette MG, Acharya D, Currie CR et al (2018) Complete genome sequence of Dietzia sp. strain WMMA184, a marine coral-associated bacterium. Genome Announc 6(5):e01582-e1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Selig ER, Casey KS et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6):e124

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddemeier RW, Ware JR, Gardner TA et al (2003) Coral reef decline in the Caribbean. Science 302(5644):391–393

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Silva AI, Tilstra A, Migani V et al (2020) A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Sci Rep 10:1–12

    Article  Google Scholar 

  • Correa H, Haltli B, Duque C, Kerr R (2013) Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae. Microb Ecol 66:972–985

    Article  PubMed  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fietcher (ed). History of Modern Biotechnology I. Springer, Berlin, Heidelberg, pp. 1–39

  • Denner EBM, Smith GW, Busse H-J et al (2003) Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. J Med Microbiol 53:1115–1122

    CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H (1989) Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElAhwany AMD, Ghozlan HA, ElSharif HA, Sabry SA (2015) Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J Basic Microbiol 55:2–10

    Article  CAS  PubMed  Google Scholar 

  • Frydenborg BR, Krediet CJ, Teplitski M et al (2014) Temperature-dependent inhibition of opportunistic vibrio pathogens by native coral commensal bacteria. Microb Ecol 67:392–401

    Article  PubMed  Google Scholar 

  • Gao C-H, Tian X-P, Qi S-H et al (2010) Antibacterial and antilarval compounds from marine gorgonian-associated bacterium Bacillus amyloliquefaciens SCSIO 00856. J Antibiot. https://doi.org/10.1038/ja.2010.7

    Article  Google Scholar 

  • Gavriilidou A, Mackenzie TA, Sánchez P et al (2021) Bioactivity screening and gene-trait matching across marine sponge-associated bacteria. Mar Drugs. https://doi.org/10.3390/md19020075

    Article  PubMed  PubMed Central  Google Scholar 

  • Gochfeld DJ, Aeby GS (2008) Antibacterial chemical defenses in hawaiian corals provide possible protection from disease. Mar Ecol Prog Ser 362:119–128

    Article  Google Scholar 

  • Gutiérrez-Barranquero JA, Reen FJ et al (2019) Disruption of N-acyl-homoserine lactone-specific signaling and virulence in clinical pathogens by marine sponge bacteria. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12867

    Article  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR et al (2002) Climate Warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hill JE, Baiano JCF, Barnes AC (2009) Isolation of a novel strain of Bacillus pumilus from penaeid shrimp that is inhibitory against marine pathogens. J Fish Dis 32:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00158

    Article  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hunt LR, Smith SM, Downum KR, Mydlarz LD (2012) Microbial regulation in gorgonian corals. Mar Drugs 10:1225–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson CR, Fujii I (1995) Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Ann Rev Microbiol 49:201–238

    Article  CAS  Google Scholar 

  • Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 25:411–419

    Article  Google Scholar 

  • Jensen S, Frank JA, Arntzen MØ et al (2021) Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 97:fiab070. https://doi.org/10.1093/femsec/fiab070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller-Costa T, Eriksson D, Gonçalves JMS et al (2017) The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol Ecol 93:fix143. https://doi.org/10.1093/femsec/fix143

    Article  CAS  Google Scholar 

  • Keller-Costa T, Lago-Lestón A, Saraiva JP et al (2021) Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9:72. https://doi.org/10.1186/s40168-021-01031-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of red sea corals. Mar Biol 149:357–363

    Article  CAS  Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Gloc Chang Biol 17:3468–3477

  • Kim K (1994) Antimicrobial activity in gorgonian corals (Coelenterata, Octocorallia). Coral Reefs 13:75–80

    Article  Google Scholar 

  • Kothari A, Soneja D, Tang A, Carlson HK, Deutschbauer AM, Mukhopadhyay A (2019) Native plasmid-encoded mercury resistance genes are functional and demonstrate natural transformation in environmental bacterial isolates. mSystems 4(6):e00588-e619. https://doi.org/10.1128/mSystems.00588-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Royal Soc B 280(1755):20122328

    Article  Google Scholar 

  • Kumar P, Selvi SS, Govindaraju M (2012) In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application. Asian Pac J Trop Biomed 2:930–9355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushmaro A, Banin E, Loya Y (2001) Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Kvennefors ECE, Sampayo E, Kerr C et al (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid sequencing techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–175

    Google Scholar 

  • Lasker HR, Bramanti L, Tsounis G, Edmunds PJ (2020) The rise of octocoral forests on Caribbean reefs. In: Riegl B (ed) Population dynamics of the reef crisis. pp 361–410

  • Louca S, Polz MF, Mazel F et al (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943

    Article  PubMed  Google Scholar 

  • Marmann A, Aly AH, Lin W et al (2014) Co-cultivation–a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  PubMed  PubMed Central  Google Scholar 

  • McCauley M, Jackson CR, Goulet TL (2020) Microbiomes of Caribbean octocorals vary over time but are resistant to environmental change. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01272

    Article  PubMed  PubMed Central  Google Scholar 

  • McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL (2017) Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00262

    Article  Google Scholar 

  • Medema MH, Trefzer A, Kovalchuk A et al (2010) The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Montano S, Maggioni D, Liguori G et al (2020) Morpho-molecular traits of Indo-Pacific and Caribbean Halofolliculina ciliate infections. Coral Reefs 39:375–386

    Article  Google Scholar 

  • Moree WJ, McConnell OJ, Nguyen DD (2014) Microbiota of healthy corals are active against fungi in a light-dependent manner. ACS Chem Biol 9(10):2300–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow KM, Moss AG, Chadwick NE et al (2012) Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol 78:6438–6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neave MJ, Apprill A, Ferrier-Pagès C et al (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 100:8315–8324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissimov J, Rosenberg E, Munn CB (2009) Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett 292:210–215

    Article  CAS  PubMed  Google Scholar 

  • Nithyanand P, Manju S, Karutha Pandian S (2011) Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Lett. https://doi.org/10.1111/j.1574-6968.2010.02149.x

    Article  PubMed  Google Scholar 

  • Pabel CT, Vater J, Wilde C, Franke P et al (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol (NY). https://doi.org/10.1007/s10126-002-0088-8

  • Palomo S, González I, la Cruz M et al (2013) Sponge-derived Kocuria and micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Mar Drugs 11:1071–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YC, Gunasekera SP, Lopez JV et al (2006) Metabolites from the marine-derived fungus Chromocleista sp. isolated from a deep-water sediment sample collected in the Gulf of Mexico. J Nat Prod 69:580–584

    Article  CAS  PubMed  Google Scholar 

  • Patel NP, Shimpi GG, Haldar S (2021) A comparative account of resistance and antagonistic activity of healthy and bleached coral-associated bacteria as an indicator of coral health status. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.106886

    Article  Google Scholar 

  • Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33:29–40

    Article  Google Scholar 

  • Peixoto RS, Rosado PM, de Leite DC, A, et al (2017) Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00341

    Article  PubMed  PubMed Central  Google Scholar 

  • Peixoto RS, Sweet M, Villela HDM et al (2021) Coral probiotics: premise, promise, prospects. Annu Rev Anim Biosci. https://doi.org/10.1146/annurev-animal-090120-115444

    Article  PubMed  Google Scholar 

  • Peng X-Y, Wu J-T, Shao C-L (2021) Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. Mar Life Sci Technol. https://doi.org/10.1007/s42995-020-00077-5

    Article  Google Scholar 

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing

  • Raimundo I, Silva SG, Costa R, Keller-Costa T (2018) Bioactive secondary metabolites from octocoral-associated microbes — new chances for blue growth. Mar Drugs. https://doi.org/10.3390/md16120485

    Article  PubMed  PubMed Central  Google Scholar 

  • Raina J-B, Tapiolas D, Motti CA et al (2016) Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4:e2275

    Article  PubMed  PubMed Central  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Reshef L, Koren O, Loya Y et al (2006) The coral probiotic hypothesis. Env Microbiol 8:2068–2073

    Article  CAS  Google Scholar 

  • Reyes-Bonilla H, Jordán-Dahlgren E (2017) Caribbean coral reefs: past, present, and insights into the future. In: Rossi S, Bramanti L, Gori A, Covadonga O (eds) Marine animal forests, 1st edn. Springer, Cham, pp 31–72

    Chapter  Google Scholar 

  • Richardson LL (2005) Changes in a coral population on reefs of the northern Florida Keys following a coral disease epizootic. Mar Ecol Prog Ser 297:147–156

    Article  Google Scholar 

  • Rioja-Nieto R, Álvarez-Filip L (2019) Coral reef systems of the Mexican Caribbean: status, recent trends and conservation. Mar Pollut Bull 140:616–625

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Ruzicka RR, Colella MA, Porter JW et al (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser 489:125–141

    Article  Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    Article  CAS  PubMed  Google Scholar 

  • Sabdono A, Radjasa OK (2006) Anti-bacterial property of a coral-associated bacterium Bacillus sp. against coral pathogenic BBD (Black Band Disease). J Coast Zone Manag 9:175–182

    Google Scholar 

  • Seow KT, Meurer G, Gerlitz M (1997) A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol 179:7360–7368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol. https://doi.org/10.1007/s00284-008-9100-5

    Article  PubMed  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Shnit-Orland M, Sivan A, Kushmaro A (2012) Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb Ecol 64:851–859

    Article  CAS  PubMed  Google Scholar 

  • Smith GW, Ives LD, Nagelkerken IA, Ritchie KB (1996) Caribbean sea-fan mortalities. Nature 383:487

    Article  CAS  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Peng C, Zhao Y, Li Z (2012) Functional gene-guided discovery of type II polyketides from culturable actinomycetes associated with soft coral Scleronephthya sp. PLoS ONE. https://doi.org/10.1371/journal.pone.0042847

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland KP, Shaban S, Joyner JL et al (2011) Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata. PLoS ONE 6(8):e23468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland KP, Ritchie KB (2004) White pox disease of the Caribbean elkhorn coral, Acropora palmata. In: Rosenberg E, Loya Y (ed). Coral health and disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06414-6_16

  • Sweet M, Villela H, Keller-Costa T et al (2021) Insights into the cultured bacterial fraction of corals. mSystems 6(3): e01249–20

  • Teplitski M, Krediet CJ, Meyer JL, Ritchie KB (2016) Microbial interactions on coral surfaces and within the coral holobiont. In: Goffredo S, Dubinsky Z (ed). The Cnidaria Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_21.

  • Teplitski M, Ritchie K (2009) How feasible is the biological control of coral diseases? Trends Ecol Evol 24(7):378–385

    Article  PubMed  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Karutha Pandian S (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294

    Article  CAS  PubMed  Google Scholar 

  • Tout J, Siboni N, Messer LF et al (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00432

    Article  PubMed  PubMed Central  Google Scholar 

  • Tracy AM, Pielmeier ML, Yoshioka RM et al (2019) Increases and decreases in marine disease reports in an era of global change. Proc Royal Soc B 286(1912):20191718

    Article  Google Scholar 

  • Tsounis G, Edmunds PJ (2017) Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere. https://doi.org/10.1002/ecs2.1646

  • Ushijima B, Videau P, Burger AH et al (2014a) Vibrio coralliilyticus strain OCN008 is the etiological agent of acute Montipora white syndrome. Env Microbiol 80:2102–2109

    Article  Google Scholar 

  • Ushijima B, Videau P, Poscablo D (2014b) Complete genome sequence of Vibrio coralliilyticus strain OCN014, isolated from a diseased coral at palmyra atoll. Genome Announc 2(6):e01318-e1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Uzair B, Menaa F, Khan BA (2018) Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetia canaliculata. Microbiol Res 206:186–197

    Article  CAS  PubMed  Google Scholar 

  • van de Water JAJM, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts-recent advances and perspectives. Microbiome 6:1–28

    Google Scholar 

  • van Oppen MJH, Blackall LL (2019) Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. https://doi.org/10.1038/s41579-019-0223-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Vezzulli L, Pezzati E, Huete-Stauffer C et al (2013) 16S rDNA pyrosequencing of the mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS ONE 8:e67745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser 329:115–121

    Article  Google Scholar 

  • Weil E, Rogers CS, Croquer A (2016) Octocoral diseases in a changing ocean. In: Rossi S, Bramanti L, Gori A, Orejas Saco del Valle C (ed). Marine animal forests. Springer, Cham, pp 1–55

  • Wessels W, Sprungala S, Watson S-A (2017) The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix013

    Article  PubMed  Google Scholar 

  • Zhang X, Xu X, He F, Qi S (2013) Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians. J Microbiol Biotechnol 23:437–443

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. William K. Fitt for logistical support. Samples were collected under Florida Keys National Marine Sanctuary Research Permit FKNMS-2019-078 and Florida Fish and Wildlife Conservation Commission Division of Marine Fisheries Management Special Activity Licenses SAL-19-2138-SRP and SAL-21-2138-SRP. Funding was provided by a grant from the American Museum of Natural History Lerner-Gray Memorial Fund and University of Alabama Graduate School Travel and Research awards to MM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie B. Olson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Steve Vollmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, M., Giorgi, A., Kemp, D.W. et al. Cultivable bacteria associated with Caribbean octocorals are active against coral pathogens but exhibit variable bioactivity when grown under different temperature conditions. Coral Reefs 41, 1365–1377 (2022). https://doi.org/10.1007/s00338-022-02285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-022-02285-0

Keywords

Navigation