Skip to main content

Advertisement

Log in

Antimicrobial activity of Red Sea corals

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Scleractinian corals and alcyonacean soft corals are the two most dominant groups of benthic marine organisms inhabiting the coral reefs of the Gulf of Eilat, northern Red Sea. Antimicrobial assays performed with extracts of six dominant Red Sea stony corals and six dominant soft corals against marine bacteria isolated from the seawater surrounding the corals revealed considerable variability in antimicrobial activity. The results demonstrated that, while the majority (83%) of Red Sea alcyonacean soft corals exhibited appreciable antimicrobial activity against marine bacteria isolated from the seawater surrounding the corals, the stony corals had little or no antimicrobial activity. From the active soft coral species examined, Xenia macrospiculata exhibited the highest and most potent antimicrobial activity. Bioassay-directed fractionation indicated that the antimicrobial activity was due to the presence of a range of compounds of different polarities. One of these antibiotic compounds was isolated and identified as desoxyhavannahine, with a minimum inhibitory concentration (MIC) of 48 μg ml−1 against a marine bacterium. The results of the current study suggest that soft and hard corals have developed different means to combat potential microbial infections. Alcyonacean soft corals use chemical defense through the production of antibiotic compounds to combat microbial attack, whereas stony corals seem to rely on other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aceret TL, Coll JC, Ychio Y, Sammarco PW (1998) Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol C 120:121–126

    CAS  PubMed  Google Scholar 

  • Alderslade P (2000) Four new genera of soft corals (Coelenterata: Octocorallia), with notes on the classification of some established taxa. Zool Med Leiden 74:237–249

    Google Scholar 

  • Almourabit A, Gillet B, Ahond A, Beloeil JC, Poupat C, Potier P (1989) Invertébrés marins du lagon Néo-Calédonien, XI. Les desoxyhavannahines, nouveaux metabolites de Xenia membranacea. J Nat Prod 52:1080–1087

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Amade P, Charroin C, Baby C, Vacelet J (1987) Antimicrobial activities of marine sponges from the Mediterranean Sea. Mar Biol 94:271–275

    Article  Google Scholar 

  • Amade P, Pesando D, Chevolot L (1982) Antimicrobial activities of marine sponges from French polynesia and brittany. Mar Biol 70:223–228

    Article  Google Scholar 

  • Antonius A (1985) Black band disease infection experiments on hexacorals and octocorals. Proc Fifth Int Coral Reef Symp Tahiti 6:155–160

    Google Scholar 

  • Austin B (1988) Marine microbiology. Cambridge University Press, NY

    Google Scholar 

  • Becerro MA, Lopez NI, Turon X, Uriz MJ (1994) Antimicrobial activity and surface bacterial film in marine sponges. J Exp Mar Biol Ecol 179:195–205

    Article  Google Scholar 

  • Benayahu Y, Loya Y (1977) Space partitioning by stony corals, soft corals, and benthic algae on the coral reefs of the northern Gulf of Eilat (Red Sea). Helgol Wiss Meeresunters 30:362–382

    Article  Google Scholar 

  • Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55

    Article  Google Scholar 

  • Bergquist PR, Bedford JJ (1978) The incidence of antibacterial activity in marine Demospongiae; systematic and geographic considerations. Mar Biol 46:216–221

    Article  Google Scholar 

  • Burkholder PR, Burkholder LM (1958) Antimicrobial activity of horny corals. Science 127:1174–1175

    Article  CAS  Google Scholar 

  • Burkholder PR, Ruetzler K (1969) Antimicrobial activity of some marine sponges. Nature 222:983–984

    Article  CAS  Google Scholar 

  • Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol 18:155–162

    Article  CAS  Google Scholar 

  • De Silva ED, Scheuer PJ (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variavilis (Polejaeff). Tetrahedron Lett 21:1611–1614

    Article  Google Scholar 

  • Ducklow HW (1990) The biomass, production and fate of bacteria in coral reefs. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, NY, pp 265–289

    Google Scholar 

  • Ducklow HW, Mitchell R (1979a) Composition of mucus released by coral reef coelenterates. Limnol Ocean 24:706–714

    Article  CAS  Google Scholar 

  • Ducklow HW, Mitchell R (1979b) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Ocean 24:715–725

    Article  Google Scholar 

  • Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632–633

    Article  CAS  Google Scholar 

  • Geffen Y, Rosenberg E (2005) Stress-induced rapid release of antibacterials by scleractinian corals. Mar Biol 146:931–935

    Article  Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    Article  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    Article  CAS  Google Scholar 

  • Higgs MD, Faulkner DJ (1978) Plakortin, an antibiotic from Plakortis halichondroides. J Org Chem 43:3454–3457

    Article  CAS  Google Scholar 

  • Hodgson G (1990) Tetracycline reduces sedimentation damage to corals. Mar Biol 104:493–496

    Article  CAS  Google Scholar 

  • Jenkins KM, Jensen PR, Fenical W (1998) Bioassays with marine microorganisms. In: Haynes KF, Millar JG (eds) Methods in chemical ecology, vol 2, Bioassay methods. Chapman and Hall, NY, pp 1–38

    Google Scholar 

  • Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 125:411–419

    Article  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16

    Article  Google Scholar 

  • Kelman D, Kushmaro A, Loya Y, Kashman Y, Benayahu Y (1998) Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: reproductive and developmental considerations. Mar Ecol Prog Ser 169:87–95

    Article  Google Scholar 

  • Kim K (1994) Antimicrobial activity in gorgonian corals (Coelenterata, Octocorallia). Coral Reefs 13:75–80

    Article  Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398

    Article  CAS  Google Scholar 

  • König GM, Coll JC, Bowden BF, Gulbis JM, MacKay MF, La Barre SC, Laurent D (1989) The structure determination of xenicane diterpene from Xenia garciae. J Nat Prod 52:294–299

    Article  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396

    Article  CAS  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147:159–165

    Article  Google Scholar 

  • Marquis CP, Baird AH, de Nys R, Holmström C, Koziumi N (2005) An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs 24:248–253

    Article  Google Scholar 

  • Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Article  Google Scholar 

  • McCaffrey EJ, Endean R (1985) Antimicrobial activity of tropical and subtropical sponges. Mar Biol 89:1–8

    Article  Google Scholar 

  • Mikki W, Otaki N, Yokoyama A, Kusumi T (1996) Possible origin of zeaxanthin in the marine sponge, Reniera japonica. Experientia 52:93–96

    Article  Google Scholar 

  • Mitchell R, Chet I (1975) Bacterial attack of corals in polluted seawater. Micro Ecol 2:227–233

    Article  CAS  Google Scholar 

  • Newbold RW, Jensen PR, Fenical W, Pawlik JR (1999) Antimicrobial activity of Caribbean sponge extracts. Aquat Microb Ecol 19:279–284

    Article  Google Scholar 

  • Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244

    Article  CAS  Google Scholar 

  • Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rheinheimer G (1992) Aquatic microbiology, 4th edn. Wiley, NY

    Google Scholar 

  • Richardson LL, Goldberg WM, Kuta KG (1998) Florida’s mystery coral-killer identified. Nature 392:557–558

    Article  CAS  Google Scholar 

  • Ritchie KB, Smith GW, Gerace DT (1994) Grouping of bacterial heterotrophs from scleractinian corals using metabolic potentials. In: Proceedings of the 26th Meet Association Mar Lab Caribbean. San Salvador, Bahamas, Bahamian field stations, pp 224–236

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rublee AP, Lasker RH, Gottfriend M, Roman RM (1980) Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull Mar Sci 30:888–893

    Google Scholar 

  • Segel AL, Ducklow WH (1982) A theoretical investigation into the influence of sublethal stresses on coral-bacterial ecosystem dynamics. Bull Mar Sci 32:919–935

    Google Scholar 

  • Slattery M, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77

    Article  CAS  Google Scholar 

  • Smith GW, Ives LD, Nagelkerken IA, Ritchie KB (1996) Caribbean sea-fan mortalities. Nature 383:487

    Article  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg PD (2004) Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Appl Environ Microbiol 70:4387–4389

    Article  CAS  Google Scholar 

  • Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110:45–57

    Article  Google Scholar 

  • Walls JT, Ritz DA, Blackman AJ (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. J Exp Mar Biol Ecol 169:1–13

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Inter University Institute of Marine Biology at Eilat for their hospitality and facilities. We thank A. Rudi for the NMR work, A. Price, R. Gottlieb, N. Avni, and A. Gottlieb for their laboratory assistance, and I. Brickner for the coral identification and assistance with the image analysis software. The suggestions of two anonymous reviewers significantly improved the quality of the manuscript. This research was supported by a grant from Israel Ministry of Science and Technology. The corals used in the current study were collected under permission from Israel Nature and National Parks Protection Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dovi Kelman.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelman, D., Kashman, Y., Rosenberg, E. et al. Antimicrobial activity of Red Sea corals. Marine Biology 149, 357–363 (2006). https://doi.org/10.1007/s00227-005-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0218-8

Keywords

Navigation