Coral Reefs

, Volume 34, Issue 2, pp 535–547 | Cite as

Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata

  • Dustin W. Kemp
  • Daniel J. Thornhill
  • Randi D. Rotjan
  • Roberto Iglesias-Prieto
  • William K. Fitt
  • Gregory W. Schmidt


Recently, the Caribbean reef-building coral Orbicella faveolata was listed as “threatened” under the U.S. Endangered Species Act. Despite attention to this species’ conservation, the extent of geographic variation within O. faveolata warrants further investigation. O. faveolata is unusual in that it can simultaneously harbor multiple genetically distinct and co-dominant species of endosymbiotic dinoflagellates in the genus Symbiodinium. Here, we investigate the geographic and within-colony complexity of Symbiodinium-O. faveolata associations from Florida Keys, USA; Exuma Cays, Bahamas; Puerto Morelos, Mexico; and Carrie Bow Cay, Belize. We collected coral samples along intracolony axes, and Symbiodinium within O. faveolata samples was analyzed using the nuclear ITS2 region and chloroplast 23S rDNA genotyping. O. faveolata associated with species of Symbiodinium in clades A (type A3), B (B1 and B17), C (C3, C7, and C7a), and D (D1a/Symbiodinium trenchii). Within-colony distributions of Symbiodinium species correlated with light availability, cardinal direction, and depth, resulting in distinct zonation patterns of endosymbionts within a host. Symbiodinium species from clades A and B occurred predominantly in the light-exposed tops, while species of clade C generally occurred in the shaded sides of colonies or in deeper-water habitats. Furthermore, geographic comparisons of host–symbiont associations revealed regional differences in Symbiodinium associations. Symbiodinium A3 was detected in Mesoamerican coral colonies, but not in colonies from the Florida Keys or Bahamas. Likewise, Symbiodinium B17 was unique to Mesoamerican O. faveolata, whereas Symbiodinium B1 was found at all localities sampled. However, using cp23S genotyping paired with ITS2 analysis revealed geographically endemic haplotypes among Symbiodinium clades A, B, and C. Since Symbiodinium spatial heterogeneity among this coral species is greater than most corals, a question arises as to whether all western Atlantic populations of O. faveolata should be considered equally “threatened”? Alternatively, geographically and spatially distinct coral–symbiont associations may benefit from specialized management protocols.


Biogeography Ecological speciation Endangered Species Act Orbicella faveolata Symbiosis Symbiodinium 



We thank the Florida Keys National Marine Sanctuary, Caribbean Marine Research Center, Bahamas, the Universidad Nacional Autónoma de México, Mexico, and Carrie Bow Key field station, Belize, for permits and help obtaining samples. We thank Edgar Mancera for providing temperature data for Puerto Morelos, Mexico. Jennifer McCabe Reynolds, Xavier Hernandez-Pech, Clint Oakley, and Gordon Hendler provided dive support. We thank Scott Santos for cp23S primers and Jake Li from Defenders of Wildlife for helpful discussion concerning the ESA. National Science Foundation grant NSF-0137007 awarded to W.K.F. and G.W.S. and The World Bank Center of Excellence, Coral Reef Targeted Research program, supported this work and grant NSF-1015342 provided salary to D.W.K. during the completion of this work. This is contribution number 971 of the Caribbean Coral Reef Ecosystems Program (CCRE), Smithsonian Institution, supported in part by the Hunterdon Oceanographic Research Fund, contribution number 82 of the Key Largo Marine Research Laboratory, and contribution number 125 of the Department of Biological Sciences at Auburn University.


  1. Alvarado-Chacón EM, Acosta A (2009) Population size-structure of the reef-coral Montastraea annularis in two contrasting reefs of a marine protected area in the southern Caribbean Sea. Bull Mar Sci 85:61–76Google Scholar
  2. Anthony K, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R, Eakin CM, Game ET, Gooch M, Graham NA (2014) Operationalizing resilience for adaptive coral reef management under global environmental change. Glob Chang BiolGoogle Scholar
  3. Aronson R, Bruckner A, Moore J, Precht B, Weil E (2008) Montastraea faveolata. The IUCN Red List of Threatned Species Version 2014.1Google Scholar
  4. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  5. Baums IB, Devlin-Durante MK, LaJeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203–4215CrossRefPubMedGoogle Scholar
  6. Baums IB, Johnson ME, Devlin-Durante MK, Miller MW (2010) Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract. Coral Reefs 29:835–842CrossRefGoogle Scholar
  7. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312CrossRefGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  9. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34CrossRefPubMedGoogle Scholar
  10. Davis GE (1982) A century of natural change in coral distribution at the Dry Tortugas - a comparison of reef maps from 1881 and 1976. Bull Mar Sci 32:608–623Google Scholar
  11. Edmunds PJ, Elahi R (2007) The demographics of a 15-year decline in cover of the Caribbean reef coral Montastraea annularis. Ecol Monogr 77:3–18CrossRefGoogle Scholar
  12. Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  13. Fitt WK, Spero HJ, Halas J, White MW, Porter JW (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean bleaching event. Coral Reefs 12:57–64CrossRefGoogle Scholar
  14. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960CrossRefPubMedGoogle Scholar
  15. Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512CrossRefGoogle Scholar
  16. Goreau TF, Wells JW (1967) Shallow-water scleractinia of Jamaica: Revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453Google Scholar
  17. Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallidal Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498CrossRefGoogle Scholar
  18. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefPubMedGoogle Scholar
  19. Howells EJ, Berkelmans R, van Oppen MJ, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088CrossRefPubMedGoogle Scholar
  20. Howells E, Beltran V, Larsen N, Bay L, Willis B, Van Oppen M (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120CrossRefGoogle Scholar
  21. Hudson J (1981) Growth rates in Montastraea annularis: A record of environmental change in Key Largo coral reef marine sanctuary, Florida. Bull Mar Sci 3:444–459Google Scholar
  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  23. Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263CrossRefGoogle Scholar
  24. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763CrossRefGoogle Scholar
  25. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  26. Kamezaki M, Higa M, Hirose M, Suda S, Reimer JD (2013) Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Mar Biodivers 43:61–70CrossRefGoogle Scholar
  27. Kemp DW, Fitt WK, Schmidt GW (2008) A microsampling method for genotyping coral symbionts. Coral Reefs 27:289–293CrossRefGoogle Scholar
  28. Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceanogr 59:788–797CrossRefGoogle Scholar
  29. Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low temperature stress. Glob Chang Bio 17:3468–3477CrossRefGoogle Scholar
  30. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  31. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Bio Evol 22:1158–1158Google Scholar
  32. LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134CrossRefPubMedGoogle Scholar
  33. LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6:e29013CrossRefPubMedCentralPubMedGoogle Scholar
  34. LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391CrossRefGoogle Scholar
  35. LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc Lond B Biol Sci 276:4139–4148CrossRefGoogle Scholar
  36. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  37. LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319CrossRefGoogle Scholar
  38. LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800CrossRefGoogle Scholar
  39. Leichter JJ, Helmuth B, Fischer AM (2006) Variation beneath the surface: quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J Mar Res 64:563–588CrossRefGoogle Scholar
  40. Mayer A (1914) The effects of temperature on tropical marine animals. Carnegie Inst Wash 183:1–24Google Scholar
  41. Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937CrossRefGoogle Scholar
  42. Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563CrossRefPubMedGoogle Scholar
  43. Muscatine L, Porter JW (1977) Reef corals - mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  44. NMFS (2014) Final listing determinations on proposal to list 66 reef-building coral species and to reclassify elkhorn and staghorn corals, final rule 79, Federal Register 53852–54123Google Scholar
  45. Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University 2Google Scholar
  46. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898CrossRefPubMedGoogle Scholar
  47. Pettay DT (2011) Diversity, stability, and connectivity of Symbiodinium populations and various spatial scales. Ph.D. dissertation, Pennsylvania State University, pp 1–174Google Scholar
  48. Pettay DT, Wham DC, Pinzon JH, Lajeunesse TC (2011) Genotypic diversity and spatial–temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 20:5197–5212CrossRefPubMedGoogle Scholar
  49. Pinzón JH (2011) Phylogenetics, population genetics and ecology to understand the evolution of coral-algal mutualisms. Ph.D. disseration, Pennsylvania State University, pp 1–155Google Scholar
  50. Pinzón JH, Devlin-Durante MK, Weber MX, Baums IB, LaJeunesse TC (2011) Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). Conserv Genet Resour 3:45–47CrossRefGoogle Scholar
  51. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  52. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30CrossRefPubMedGoogle Scholar
  53. Porter JW, Battey JF, Smith GJ (1982) Perturbation and change in coral reef communities. Proc Natl Acad Sci USA 79:1678–1681CrossRefPubMedCentralPubMedGoogle Scholar
  54. Reed JK (1985) Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. Proc 5th Int Coral Reef Symp 6:249–254Google Scholar
  55. Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678CrossRefPubMedCentralPubMedGoogle Scholar
  56. Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579CrossRefGoogle Scholar
  57. Rotjan RD, Dimond JL, Thornhill DJ, Leichter JJ, Helmuth B, Kemp DW, Lewis SM (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25:361–368CrossRefGoogle Scholar
  58. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853CrossRefPubMedCentralPubMedGoogle Scholar
  59. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269CrossRefPubMedGoogle Scholar
  60. Sampayo EM, Dove S, Lajeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519CrossRefPubMedGoogle Scholar
  61. Santos SR, Shearer TL, Hannes AR, Coffroth MA (2004) Fine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol Ecol 13:459–469CrossRefPubMedGoogle Scholar
  62. Santos SR, Taylor DJ, Kinzie RA 3rd, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111CrossRefPubMedGoogle Scholar
  63. Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar Ecol Prog Ser 248:85–97CrossRefGoogle Scholar
  64. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  65. Severance EG, Karl SA (2006) Contrasting population genetic structure of sympatric, mass-spawning Caribbean corals. Mar Biol 150:57–68CrossRefGoogle Scholar
  66. Stat M, Pochon X, Cowie RO, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96CrossRefGoogle Scholar
  67. Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–53CrossRefGoogle Scholar
  68. Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242CrossRefPubMedCentralPubMedGoogle Scholar
  69. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535CrossRefPubMedCentralPubMedGoogle Scholar
  70. Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519CrossRefGoogle Scholar
  71. Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 4:e6262CrossRefPubMedCentralPubMedGoogle Scholar
  72. Thornhill DJ, Doubleday K, Kemp DW, Santos SR (2010a) Host hybridization alters specificity of cnidarian-dinoflagellate associations. Mar Ecol Prog Ser 420:113–123CrossRefGoogle Scholar
  73. Thornhill DJ, Kemp DW, Sampayo EM, Schmidt GW (2010b) Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems. Coral Reefs 29:83–91CrossRefGoogle Scholar
  74. Thornhill D, Lewis A, Wham D, LaJeunesse T (2014) Host specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367CrossRefPubMedGoogle Scholar
  75. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  76. Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135CrossRefGoogle Scholar
  77. Thornhill DJ, Yiang X, Pettay DT, Zhong M, Santos SR (2013) Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 22:4499–4515CrossRefPubMedGoogle Scholar
  78. Toller WW, Rowan R, Knowlton N (2001a) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359CrossRefPubMedGoogle Scholar
  79. Toller WW, Rowan R, Knowlton N (2001b) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373CrossRefPubMedGoogle Scholar
  80. Tonk L, Bongaerts P, Sampayo EM, Hoegh-Guldberg O (2013) SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecology 13:7CrossRefPubMedCentralPubMedGoogle Scholar
  81. Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Bio Ecol 339:86–95CrossRefGoogle Scholar
  82. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012CrossRefPubMedCentralPubMedGoogle Scholar
  83. Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897CrossRefGoogle Scholar
  84. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694CrossRefPubMedGoogle Scholar
  85. Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dustin W. Kemp
    • 1
  • Daniel J. Thornhill
    • 2
  • Randi D. Rotjan
    • 3
  • Roberto Iglesias-Prieto
    • 4
  • William K. Fitt
    • 1
  • Gregory W. Schmidt
    • 5
  1. 1.Odum School of EcologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Biological SciencesAuburn UniversityAuburnUSA
  3. 3.John H. Prescott Marine LaboratoryNew England AquariumBostonUSA
  4. 4.Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoPuerto MorelosMexico
  5. 5.Department of Plant BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations