Skip to main content

Advertisement

Log in

Muskelaktivität: Prägung des ZNS und endokrine Funktion

Somatische oder degenerativ-nozizeptive Körperstruktur

Muscle activity: structuring the CNS and endocrine function

Somatic or degenerative-nociceptive body structure

  • Leitthema
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Nur die aktiven Muskeln sind Quelle bewegungsspezifischer myofaszialer Afferenzen und von Signalstoffen, den Myokinen. Die Afferenzen bedingen die Adaptationen des Gehirns (Repräsentationen), die Myokine die des Energie- und Intermediärstoffwechsels und die Kommunikation besonders mit dem viszeralen Fett. Im ZNS sorgen Lern-, Ausdauer- und Krafttraining für hochspezifische Anpassungen. Die Hirnstrukturen der Sensomotorik sind mit denen des Schmerzes deckungsgleich oder eng verknüpft und Ursprung der endogenen Schmerzhemmsysteme. Bewegung und Schmerzhemmung gehören zusammen. Muskelaktivität strukturiert den Körper „somatisch, antientzündlich, antinozizeptiv“, koordiniert die Antischmerzsysteme und ist damit Regulator des gesundheitlichen Status des Organismus. Muskelinaktivität verschiebt die Bilanz zugunsten der Signalsstoffe des viszeralen Fetts. Es entsteht eine chronische systemische Low-grade-Entzündung. Sie verantwortet die „diseasome of physical inactivity“, die häufig mit chronischen Schmerzsyndromen verknüpft sind. Inaktivität führt zu einer „atrophisch-degenerativ-entzündlich-nozizeptiven“ Körperstruktur. Unterstützt wird diese durch die chronische metabolische Azidose des Alterungsprozesses. Das nozizeptive Afferenzmuster ist chronischer Stress für die Neuronennetzwerke. Diese unterliegen atrophischen und neurodegenerativen Veränderungen. Es entsteht eine „nozizeptive“ ZNS-Struktur, deren Ausgangspunkt die sensomotorische und damit muskuläre Inaktivität ist. Therapeutisch muss die Muskulatur wieder als Signalstoffproduzent und Informationsquelle aktiviert werden. Sie ist der Schlüssel zur „somatisch-antinozizeptiven“ Körperstruktur.

Abstract

The contracting musculature is the only source of movement-specific afferents and signal substances, the myokines. The afferents determine the adaptations of the brain (cortical representations) and the myokines the metabolic functions of the muscle fibers and the communication especially with the visceral fat. By sensomotoric learning, endurance and strength training the central nervous system (CNS) is structured highly specifically. All CNS structures for the sensomotoric functions are identical or closely connected with those of nociception or are the origin of the endogenetic inhibitory pain systems. Movement and pain inhibition belong together. Contractile muscle activity restructures a somatic-anti-inflammatory-antinociceptive body, coordinates the inhibitory pain systems and regulates the health status of the organism. Muscle inactivity changes the balance of the signal substances in support of those of visceral fat. The result is a chronic systemic low-grade inflammation as the source of the diseasome of physical inactivity frequently connected with chronic pain syndromes. Muscle inactivity leads to an atrophic-degenerative-inflammatory-nociceptive body structure. The nociceptive afferent pattern is chronic stress for the neuronal networks and produces atrophy and neurodegeneration and as a consequence of muscle inactivity a nociceptive peripheral and CNS structure develops. From a therapeutic point of view, the musculature as a producer of signal substances and source of afferent neuronal information must be activated. The muscle activity is the key for the somatic-antinociceptive body structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adkins DL, Boychuk J, Remple MS, Kleim JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101:1776–1782

    Article  PubMed  Google Scholar 

  2. Akerstrom T, Steensberg A, Keller P et al (2004) Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 563:507–516

    Article  PubMed  Google Scholar 

  3. Apkarian AV, Sosa Y, Sonty S et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  CAS  PubMed  Google Scholar 

  4. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403

    Article  CAS  PubMed  Google Scholar 

  5. Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11(5):365–373

    CAS  PubMed  Google Scholar 

  6. Bek EL, McMillen MA, Scott P et al (2002) The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin Sci (Lond) 103(Suppl 48):424S–429S

    Google Scholar 

  7. Bengtsson A (2002) The muscle in fibromyalgia. Rheumatology (Oxford) 41(7):721–724

    Google Scholar 

  8. Bron C, Dommerholt J, Stegenga B et al (2011) High prevalence of shoulder girdle muscles with myofascial trigger points in patients with shoulder pain. BMC Musculoskeletal Disorders 12:139

    Article  PubMed  Google Scholar 

  9. Brown JA (2001) Motor cortex stimulation. Neurosurg Focus 11(3):E5

    CAS  PubMed  Google Scholar 

  10. Busquets S, Figueras MT, Meijsing S et al (2005) Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. Int J Mol Med 16(3):471–476

    CAS  PubMed  Google Scholar 

  11. Chan MH, Carey AL, Watt MJ, Febbraio MA (2004) Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol 287(2):R322–327

    Article  CAS  PubMed  Google Scholar 

  12. Clow C, Jasmin BJ (2010) Brain-derived neurotrophic factor regulates satellite cell differentiation and skeletal muscle regeneration. Mol Biol Cell 21:2182–2190

    Article  CAS  PubMed  Google Scholar 

  13. Novellis V de, Siniscalco D, Galderisi U et al (2004) Blockade of glutamate mGlu5 receptors in a rat model of neuropathic pain prevents early over-expression of pro-apoptotic genes and morphological changes in dorsal horn lamina II. Neuropharmacology 46(4):468–479

    Article  PubMed  Google Scholar 

  14. Diederichsen LP, Winther A, Dyhre-Poulsen P et al (2009) The influence of experimentally induced pain on shoulder muscle activity. Exp Brain Res 194(3):329–337

    Article  PubMed  Google Scholar 

  15. Diederichsen LP, Nørregaard J, Dyhre-Poulsen P et al (2009) The activity pattern of shoulder muscles in subjects with and without subacromial impingement. J Electromyogr Kinesiol 19(5):789–799

    Article  PubMed  Google Scholar 

  16. Di Francescomarino S, Sciartilli A, Di Valerio V et al (2009) The effect of exercise on endothelial function. Sports Med 39:797–812

    Article  Google Scholar 

  17. Elvin A, Siösteen AK, Nilsson A, Kosek E (2006) Decreased muscle blood flow in fibromyalgia patients during standardised muscle exercise: a contrast media enhanced colour Doppler study. Eur J Pain 10(2):137–144

    Article  PubMed  Google Scholar 

  18. Falla D, Farina D, Graven-Nielsen T (2007) Experimental muscle pain results in reorganization of ccordination among trapezius muscle subdivisions during repetitive shoulder flexion. Exp Brain Res 178(3):385–393

    Article  PubMed  Google Scholar 

  19. Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanism for activation and possible biological roles. FASEB 16:1335–1347

    Article  CAS  Google Scholar 

  20. Fischer CP, Hiscock NJ, Penkowa M et al (2004) Supplementation with vitamins C and E inhibits the release of interleukine-6 from contracting human skeletal muscle. J Physiol 558:633–645

    Article  CAS  PubMed  Google Scholar 

  21. Furmanczyk PS, Quinn LS (2003) Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27(10):845–851

    Article  CAS  PubMed  Google Scholar 

  22. Frydelund-Larsen L, Penkowa M, Akerstrom T et al (2007) Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle. Exp Physiol 92(1):233–240

    Article  CAS  PubMed  Google Scholar 

  23. García-Larrea L, Peyron R, Mertens P et al (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83(2):259–273

    Article  PubMed  Google Scholar 

  24. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16:1248–1257

    Article  CAS  PubMed  Google Scholar 

  25. Grachev ID, Fredrickson BE, Apkarian AV (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89(1):7–18

    Article  CAS  PubMed  Google Scholar 

  26. Hagert E, Forsgren S, Ljung BO (2005) Differences in the presence of mechanoreceptors and nerve structures between wrist ligaments may imply differential roles in wrist stabilization. J Orthop Res 23(4):757–763

    Article  PubMed  Google Scholar 

  27. Hosomi K, Saitoh Y, Kishima H et al (2008) Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain. Clin Neurophysiol 119(5):993–1001

    Article  PubMed  Google Scholar 

  28. Keller P, Keller C, Carey AL et al (2003) Interleukin-6 production by contracting human skeletal muscle: autocrine regulation by IL-6. Biochem Biophys Res Commun 319:550–554

    Article  Google Scholar 

  29. Langevin HM (2006) Connective tissue: a body-wide signaling network? Med Hypotheses 66(6):1074–1077

    Article  PubMed  Google Scholar 

  30. Laube W (Hrsg) (2009) Sensomotorisches System. Thieme, Stuttgart

  31. Laube W, Angleitner CH (2009) Klinik, Physiologie und Pathophysiologie der manuellen Therapie. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 310–338

  32. Laube W (2009) Physiologie des Alterungsprozesses. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 339–368

  33. Laube W (2009) Deadaptationsprozesse durch Inaktivität und Immobilisation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 369–374

  34. Laube W (2009) Pathophysiologie des sensomotorischen Systems nach Verletzungen und bei degenerativen Gelenkerkrankungen. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 375–439

  35. Laube W, Anders CH (2009) Pathophysiologie des low back pain. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 440–472

  36. Laube W, Kannenberg A (2009) Chronische ernährungs- und altersbedingte metabolische Azidose. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 473–495

  37. Laube W (2011) Der Zyklus Belastung – Adaptation. Grundlage für Struktur, Funktion, Leistungsfähigkeit und Gesundheit. Manuelle Med 50:335–343

    Article  Google Scholar 

  38. Laye MJ, Thyfault JP, Stump CS, Booth FW (2007) Inactivity induces increases in abdominal fat. J Appl Physiol 102(4):1341–1347

    Article  PubMed  Google Scholar 

  39. Liebscher-Bracht P, Liebscher-Bracht R (2010) Der Schmerzcode. Ihr Schlüssel zur Schmerzfreiheit. Die Schmerztherapie nach Liebscher-Bracht: LnB painless. Mack, Mellrichstadt

  40. Lucas KR, Rich PA, Polus BI (2010) Muscle activation pattern in the scapular positioning muscles during loaded scapular plane elevation: the effects of latent myofascial trigger points. Clin Biochem 25(8):765–770

    Google Scholar 

  41. Lucas JM, Ji Y, Masri R (2011) Motor cortex stimulation reduces hyperalgesia in an animal model of central pain. Pain 152(6):1398–1407

    Article  PubMed  Google Scholar 

  42. Maihöfner C, Nickel FT, Seifert F (2010) Neuropathic pain and neuroplasticity in functional imaging studies. Schmerz 24(2):137–145

    Article  PubMed  Google Scholar 

  43. Matthews VB, Aström MB, Chan MH et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52(7):1409–1418

    Article  CAS  PubMed  Google Scholar 

  44. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 3(2):65–94

    Article  CAS  PubMed  Google Scholar 

  45. Moldoveanu AI, Shephard RJ, Shek PN (2000) Exercise elevates plasma levels but not gene expression of IL-1β, IL-6, and TNF-α in blood mononuclear cells. J Appl Physiol 89:1499–1504

    CAS  PubMed  Google Scholar 

  46. Mucci P, Durand F, Lebel B et al (2000) Interleukins 1-beta, -8, and histamine increases in highly trained, exercising athletes. Med Sci Sports Exerc 32(6):1094–1100

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen AR, Hojman P, Erikstrup C et al (2008) Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab 93(11):4486–4493 (Epub 12. Aug. 2008)

    Article  CAS  PubMed  Google Scholar 

  48. Olsen RH, Thomsen C, Booth FW, Pedersen BK (2008) Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA 299:1261–1263

    Article  CAS  PubMed  Google Scholar 

  49. Ostrowski K, Rohde T, Asp S et al (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515(Pt 1):287–291

    Article  CAS  PubMed  Google Scholar 

  50. Pagano RL, Assis DV, Clara JA et al (2011) Transdural motor cortex stimulation reverses neuropathic pain in rats: a profile of neuronal activation. Eur J Pain 15(3):268.e1–14

    PubMed  Google Scholar 

  51. Pedersen M, Steensberg A, Keller C et al (2004) Does the aging skeletal muscle maintain its endocrine function? Exerc Immunol Rev 10:42–55

    PubMed  Google Scholar 

  52. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  CAS  PubMed  Google Scholar 

  53. Pedersen BK (2010) Muscles and their myokines. J Exp Biol 214:337–346

    Article  Google Scholar 

  54. Piché M, Arsenault M, Rainville P (2009) Cerebral and cerebrospinal processes underlying counter irritation analgesia. J Neurosci 29(45):14236–14246

    Article  PubMed  Google Scholar 

  55. Plomgaard P, Bouzakri K, Krogh-Madsen R et al (2005) Tumor nekrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetis 54:2939–2945

    Article  CAS  Google Scholar 

  56. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

  57. Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589:2129–2138

    Article  CAS  PubMed  Google Scholar 

  58. Quinn LS, Haugk KL, Grabstein KH (1995) Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology 136(8):3669–3672

    Article  CAS  PubMed  Google Scholar 

  59. Quinn LS, Haugk KL, Damon SE (1997) Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem Biophys Res Commun 239(1):6–10

    Article  CAS  PubMed  Google Scholar 

  60. Quinn LS, Anderson BG, Drivdahl RH et al (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280(1):55–63

    Article  CAS  PubMed  Google Scholar 

  61. Quinn LS, Anderson BG, Strait-Bodey L et al (2009) Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 296(1):E191–202

    Article  CAS  PubMed  Google Scholar 

  62. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106(21):8665–8670

    Article  CAS  PubMed  Google Scholar 

  63. Rohde J (2009) Untersuchung und Therapie am Periost. Zur segmentalen Innervation des Periostes. Manuelle Med 47:334–342. DOI 10.1007/s00337-009-0702-1

    Article  Google Scholar 

  64. Rohde J (2010) Schmerztherapie über das Periost. Manuelle Med 48:447–453. DOI 10.1007/s00337-010-0808-5

    Article  Google Scholar 

  65. Rush JW, Denniss SG, Graham DA (2005) Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol 30:442–474

    Article  CAS  PubMed  Google Scholar 

  66. Sakuma K, Yamaguchi A (2011) The recent understanding of the neurotrophin’s role in skeletal muscle adaptation. J Biomed Biotechnol 2011:201696. DOI 10.1155/2011/201696

    Article  PubMed  Google Scholar 

  67. Sanchis-Alfonso V, Roselló-Sastre E (2000) Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med 28(5):725–731

    CAS  PubMed  Google Scholar 

  68. Schaible HG, Richter F (2004) Pathophysiologiy of pain. Langenbecks Arch Surg 389:237–243

    Article  PubMed  Google Scholar 

  69. Shah JP, Danoff JV, Desai MJ et al (2008) Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil 89(1):16–23

    Article  PubMed  Google Scholar 

  70. Smorawiński J, Kaciuba-Uściłko H, Nazar K et al (2000) Effects of three-day bed rest on metabolic, hormonal and circulatory responses to an oral glucose load in endurance or strength trained athletes and untrained subjects. J Physiol Pharmacol 51(2):279–289

    PubMed  Google Scholar 

  71. Starkie RL, Rolland J, Angus DJ et al (2001) Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-α levels after prolonged running. Am J Physiol Cell Physiol 280:C769–C779

    CAS  PubMed  Google Scholar 

  72. Staud R (2011) Peripheral pain mechanisms in chronic widespread pain. Best Pract Res Clin Rheumatol 25(2):155–164. DOI 10.1016/j.berh.2010.01.010

    Article  PubMed  Google Scholar 

  73. Steensberg A, Febbraio MA, Osada T et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639

    Article  CAS  PubMed  Google Scholar 

  74. Steensberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437

    CAS  PubMed  Google Scholar 

  75. Stuart CA, Shangraw RE, Prince MJ et al (1988) Bed-rest-induced insulin resistance occurs primarily in muscle. Metab Clin Exp 37:802–806

    Article  CAS  PubMed  Google Scholar 

  76. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2010) Brain resting state is disrupted in chronic back pain patients. Neurosci Lett 485(1):26–31

    Article  CAS  PubMed  Google Scholar 

  77. Tamura Y, Watanabe K, Kantani T et al (2011) Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocrine J 58(3):211–215

    Article  CAS  Google Scholar 

  78. Vincent HK, Powers SK, Stewart DJ et al (2000) Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol 81:67–74

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Laube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laube, W. Muskelaktivität: Prägung des ZNS und endokrine Funktion. Manuelle Medizin 51, 141–150 (2013). https://doi.org/10.1007/s00337-012-0989-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-012-0989-1

Schlüsselwörter

Keywords

Navigation