Skip to main content
Log in

Pathophysiology of pain

  • Current Concepts in Clinical Surgery
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Pain is a major symptom of many different diseases. Modern pain research has uncovered important neuronal mechanisms that are underlying clinically relevant pain states, and research goes on to define different types of pains on the basis of their neuronal and molecular mechanisms. This review will briefly outline neuronal mechanisms of pathophysiological nociceptive pain resulting from inflammation and injury, and neuropathic pain resulting from nerve damage. Pain is the sensation that is specifically evoked by potential or actual noxious (i.e. tissue damaging) stimuli or by tissue injury. Pain research has not only explored the neuronal and molecular basis of the “pain system” of the healthy subject but has also provided insights into the function and plasticity of the “pain system” during clinically relevant pains such as post-injury pain, inflammatory pain, postoperative pain, cancer pain and neuropathic pain. This review will briefly describe the “pain system” and then address neuronal mechanisms that are involved in clinical pain states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belmonte C, Cervero E (1996) Neurobiology of nociceptors. Oxford University Press, Oxford New York Tokyo

  2. Foreman JC (1987) Peptides and neurogenic inflammation. Br Med Bull 43:386–400

    Google Scholar 

  3. Lynn B (1996) Neurogenic inflammation caused by cutaneous polymodal receptors. Prog Brain Res 113:361–368

    CAS  PubMed  Google Scholar 

  4. Basbaum AI, Jessell TM (1999) The perception of pain. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 472–491

  5. Treede RD, Kenshalo DR, Gracely RH, Jones AKP (1999) The cortical representation of pain. Pain 79:105–111

    CAS  PubMed  Google Scholar 

  6. Jänig W, Baron R (2003) Complex regional pain syndrome: mystery explained? Lancet Neurol 2:687–697

    Article  PubMed  Google Scholar 

  7. Handwerker HO (1999) Einführung in die Pathophysiologie des Schmerzes. Springer, Berlin Heidelberg New York Tokyo

  8. Russo CM, Brose WG (1998) Chronic pain. Annu Rev Med 49:123–133

    Article  CAS  PubMed  Google Scholar 

  9. Kendall NA (1999) Psychological approaches to the prevention of chronic pain: the low back paradigm. Baillieres Best Pract Res Clin Rheumatol 13:545–554

    Article  CAS  PubMed  Google Scholar 

  10. Chapman CR, Gavrin J (1999) Suffering: the contributions of persistent pain. Lancet 353:2233–2237

    Article  CAS  PubMed  Google Scholar 

  11. Schaible H-G, Schmidt RF (2000) Pathophysiologie von Nozizeption und Schmerz. In: Fölsch UR, Kochsiek K, Schmidt RF (eds) Pathophysiologie. Springer, Berlin Heidelberg New York Tokyo, pp 55–68

  12. Schaible H-G, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195

    CAS  PubMed  Google Scholar 

  13. Kress M, Reeh PW (1996) Chemical excitation and sensitization in nociceptors. In: Belmonte C, Cervero E (eds) Neurobiology of nociceptors. Oxford University Press, Oxford New York Tokyo, pp 258–297

  14. McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    CAS  PubMed  Google Scholar 

  15. Schaible H-G (2004) The neurophysiology of pain. In: Isenberg D, Maddison P, Woo P, Glass D, Breedveld F (eds) The Oxford textbook of rheumatology, 3rd edn. Oxford University Press, Oxford New York Tokyo (in press)

  16. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  CAS  PubMed  Google Scholar 

  17. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  CAS  PubMed  Google Scholar 

  18. Bevan S (1996) Signal transduction in nociceptive afferent neurons in inflammatory conditions. Prog Brain Res 113:201–213

    CAS  PubMed  Google Scholar 

  19. Lewin GR, Rueff A, Mendell LM (1994) Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur J Neurosci 6:1903–1912

    CAS  PubMed  Google Scholar 

  20. Segond von Banchet G, Petrow PK, Bräuer R, Schaible H-G (2000) Monoarticular antigen-induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats. Arthritis Res 2:424–427

    Article  PubMed  Google Scholar 

  21. Han HC, Lee DH, Chung JM (2000) Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84:253–261

    Article  PubMed  Google Scholar 

  22. Liu CN, Michaelis M, Amir R, Devor M (2000) Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J Neuropysiol 84:205–215

    CAS  Google Scholar 

  23. Woolf CJ, Shortland P, Coggeshall RE (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355:75–78

    CAS  PubMed  Google Scholar 

  24. Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, Meyer RA (2001) Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 21:1–5

    Article  Google Scholar 

  25. Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000) Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J Neurosci 20:8754–8761

    CAS  PubMed  Google Scholar 

  26. Everill B, Kocsis JD (1999) Reduction in potassium currents in identified cutaneous afferent dorsal root ganglion neurons after axotomy. J Neurophysiol 82:700–708

    CAS  PubMed  Google Scholar 

  27. Levy D, Tal M, Hoke A, Zochodne DW (2000) Transient action of the endothelial constitutive nitric oxide synthase (ecNOS) mediates the development of thermal hypersensitivity following peripheral nerve injury. Eur J Neurosci 12:2323–2332

    Article  CAS  PubMed  Google Scholar 

  28. Michaelis M, Vogel C, Blenk KH, Arnarson A, Jänig W (1998) Inflammatory mediators sensitize acutely axotomized nerve fibers to mechanical stimulation in the rat. J Neurosci 18:7581–7587

    CAS  PubMed  Google Scholar 

  29. Perkins NM, Tracey DJ (2000) Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101:745–757

    Article  CAS  PubMed  Google Scholar 

  30. Ramer MS, Murphy PG, Richardson PM, Bisby MA (1998) Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 78:115–121

    Article  CAS  PubMed  Google Scholar 

  31. Cunha FQ, Ferreira SH (2003) Peripheral hyperalgesic cytokines. Adv Exp Med Biol 521:22–39

    CAS  PubMed  Google Scholar 

  32. Kingery WS, Guo TZ, Davies ME, Limbird L, Maze M (2000) The alpha(2A) adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain 85:345–358

    Article  CAS  PubMed  Google Scholar 

  33. Lee DH, Liu X, Kim HT, Chung K, Chung JM (1999) Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. J Neurophysiol 81:2226–2233

    CAS  PubMed  Google Scholar 

  34. Moon DE, Lee DH, Han HC, Xie J, Coggeshall RE, Chung JM (1999) Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic pain model. Pain 80:589–595

    Article  CAS  PubMed  Google Scholar 

  35. Jänig W, Levine JD, Michaelis M (1996) Interactions of sympathetic and primary afferent neurons following nerve injury and tissue trauma. In: Kumazawa T, Kruger L, Mizumura K (eds) The polymodal receptor: a gateway to pathological pain. Progress in brain research, vol 113. Elsevier Science, Amsterdam, pp 161–184

  36. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686–688

    CAS  PubMed  Google Scholar 

  37. Schaible H-G, Schmidt RF, Willis WD (1987) Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res 86:489–499

    Google Scholar 

  38. Grubb BD, Stiller RU, Schaible H-G (1993) Dynamic changes in the receptive field properties of spinal cord neurons with ankle input in rats with unilateral adjuvant-induced inflammation in the ankle region. Exp Brain Res 92:441–451

    CAS  PubMed  Google Scholar 

  39. Neugebauer V, Schaible H-G (1990) Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat’s knee. J Neurophysiol 64:299–311

    CAS  PubMed  Google Scholar 

  40. Sandkühler J, Liu X (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10:2476–2480

    Article  PubMed  Google Scholar 

  41. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  CAS  PubMed  Google Scholar 

  42. Fundytus ME (2001) Glutamate receptors and nociception. CNS Drugs 15:29–58

    CAS  PubMed  Google Scholar 

  43. Neugebauer V, Lücke T, Schaible H-G (1993) N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists block the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat’s knee joint. J Neurophysiol 70:1365–1377

    CAS  PubMed  Google Scholar 

  44. Hope PJ, Jarrott B, Schaible H-G, Clarke RW, Duggan AW (1990) Release and spread of immunoreactive neurokinin A in the cat spinal cord in a model of acute arthritis. Brain Res 533:292–299

    Article  CAS  PubMed  Google Scholar 

  45. Schaible H-G, Jarrott B, Hope PJ, Duggan AW (1990) Release of immunoreactive substance P in the cat spinal cord during development of acute arthritis in cat’s knee: a study with antibody bearing microprobes. Brain Res 529:214–223

    Article  CAS  PubMed  Google Scholar 

  46. Schaible H-G, Freudenberger U, Neugebauer V, Stiller U (1994) Intraspinal release of immunoreactive calcitonin gene-related peptide during development of inflammation in the joint in vivo—a study with antibody microprobes in cat and rat. Neuroscience 62:1293–1305

    Article  CAS  PubMed  Google Scholar 

  47. Neugebauer V, Weiretter F, Schaible H-G (1995) The involvement of substance P and neurokinin-1 receptors in the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat’s knee joint. J Neurophysiol 73:1574–1583

    CAS  PubMed  Google Scholar 

  48. Neugebauer V, Rümenapp P, Schaible H-G (1996a) The role of spinal neurokinin-2 receptors in the processing of nociceptive information from the joint and in the generation and maintenance of inflammation-evoked hyperexcitability of dorsal horn neurons in the rat. Eur J Neurosci 8:249–260

    CAS  PubMed  Google Scholar 

  49. Neugebauer V, Rümenapp P, Schaible H-G (1996b) Calcitonin gene-related peptide is involved in the generation and maintenance of hyperexcitability of dorsal horn neurons observed during development of acute inflammation in rat’s knee joint. Neuroscience 71:1095–1109

    Article  CAS  PubMed  Google Scholar 

  50. Ebersberger A, Charbel Issa P, Vanegas H, Schaible H-G (2000) Differential effects of CGRP and CGRP 8-37 upon responses to NMDA and AMPA in spinal nociceptive neurons with knee input in the rat. Neuroscience 99:171–178

    Article  CAS  PubMed  Google Scholar 

  51. Urban L, Thompson SWN, Dray A (1994) Modulation of spinal excitability: cooperation between neurokinin and excitatory amino acid transmitters. Trends Neurosci 17:432–438

    CAS  PubMed  Google Scholar 

  52. Heppelmann B, Pfeffer A, Schaible H-G, Schmidt RF (1986) Effects of acetylsalicylic acid (ASA) and indomethacin on single groups III and IV sensory units from acutely inflamed joints. Pain 26:337–351

    CAS  PubMed  Google Scholar 

  53. Ebersberger A, Grubb BD, Willingale HL, Gardiner NJ, Nebe J, Schaible H-G (2000) The intraspinal release of prostaglandin E2 in a model of acute arthritis is accompanied by an upregulation of cyclooxygenase-2 in the rat spinal cord. Neuroscience 93:775–781

    Article  Google Scholar 

  54. Vanegas H, Schaible H-G (2001) Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol 64:327–363

    CAS  PubMed  Google Scholar 

  55. Vasquez E, Bär KJ, Ebersberger A, Klein B, Vanegas H, Schaible H-G (2001) Spinal prostaglandins are involved in the development but not the maintenance of inflammation-induced spinal hyperexcitability. J Neurosci 21:9001–9008

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Georg Schaible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaible, HG., Richter, F. Pathophysiology of pain. Langenbecks Arch Surg 389, 237–243 (2004). https://doi.org/10.1007/s00423-004-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-004-0468-9

Keywords

Navigation