Skip to main content
Log in

Der Zyklus Belastung – Adaptation

Grundlage für Struktur, Funktion, Leistungsfähigkeit und Gesundheit

Cycle load – adaptation

Background for structure, function, performance and health

  • Übersichten
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Der Organismus benötigt Belastung, um die Organe und ihr Zusammenspiel strukturell und funktionell zu entwickeln, zu erhalten und die Alterungsprozesse zu beeinflussen.

Zum Vollzug der Leistungsvorgabe, der Belastung, realisiert der Organismus einen biologischen Aufwand, die Beanspruchung, und es entsteht eine beanspruchungsspezifische Ermüdung. Essenziell für alle Erholungsprozesse (Restitution, Reparatur, Adaptation) sind die Beanspruchungen der anabolen hormonellen, parakrinen und autokrinen Systeme. Sie vermitteln alle strukturellen Vorgänge in der Erholung. Herausragend ist die Achse Wachstumshormon – insulinähnlicher Wachstumsfaktor der Leber, aber auch der Körperzellen und die Testosteronproduktion. Die Hormone sichern zunächst die restitutiven und reparativen Prozesse. Diese gehen fließend in die anabolen Vorgänge über. Sie repräsentieren das Ergebnis der Beanspruchung, zu erkennen an der Funktions- und Leistungsfähigkeit. Inaktivität führt zu einem negativen Zyklus, wodurch es zu Atrophie und Funktionsverlust bis hin zur Degeneration kommt. Der Zyklus ist auch in die Prävention und Therapie von Schmerzen involviert. Zum einen haben während der Bewegungsausführung sowohl die zentralen motorischen Efferenzen als auch die propriorezeptiven Afferenzen einen hemmenden Einfluss auf die schmerzrelevanten Neuronenpopulationen im Hinterhorn. Zum anderen beteiligen sich die sensomotorischen Gehirnareale mit Strukturveränderungen an der Chronifizierung des Schmerzes.

Abstract

The organism needs load to physiologically develop all tissues, organs and their coordinated functions in childhood and adolescence, to protect these structures and functions during midlife and, especially later, to delay aging processes.

In order to execute the planned performance or load the organism must realize a concrete biological effort, the physiological use, which results in load-specific fatigue and, finally, in termination of the use. The use-related stimulation of anabolic hormonal, paracrine and autocrine regulation systems is essential to all recovery processes (restitution, reparation, adaptation). It results in the production of growth factors of different families which mediate all structural changes in the recovery period. The anabolic hormone axis growth hormone, insulin-like growth factor of the liver (hormonal IGF-1) but also of different body cells (paracrine, autocrine function) as well as the stimulation of testosterone production (axis pituitary gland, gonads) are of paramount importance. After termination of the physiological use, these anabolic hormones secure all restitutive and reparative processes to compensate for consumed resources and repair structural damages in the early phase of recovery. These processes form a continuum with the anabolic structural adaptations. They represent the biological results of the physical load and can be recognized as increased function and capacity in both the preventive and the therapeutic sense as well as with regard to the influence on aging (delay of frailty). Inactivity leads to a vicious circle resulting in atrophy and thus loss of function up to degeneration. The cycle of load and adaptation is also involved in the prevention and therapy of pain. On the one hand central motor efferents of the corticospinal and other tracts as well as proprioceptive afferents and reafferents have a direct and indirect inhibitory impact on pain relevant neuron populations in the posterior horn of the spinal cord during the execution of a movement. On the other hand structural changes of cerebral structures highly relevant to the sensorimotor system are involved in the chronification of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Adams GR (1998) The role of IGF-I in the regulation of skeletal muscle adaptation. In: Holloszy JR (Hrsg) Exercise and sport science reviews, Bd. 26. Williams & Wilkins, Baltimore, S 31–60

  2. AdamsGR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722

    Google Scholar 

  3. Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses tp altered physical activity paradigms. Am J Phys Med Rehabil 81:S40–S51

    Article  PubMed  Google Scholar 

  4. Bengtson CP, Dick O, Bading H (2008) A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity. BMC Neurosci 24:9–11

    Google Scholar 

  5. Bickel CS, Slade JM, Haddad F et al (2003) Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 94:2255–2262

    PubMed  CAS  Google Scholar 

  6. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  PubMed  CAS  Google Scholar 

  7. Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann N Y Acad Sci 692:33–43

    Article  PubMed  CAS  Google Scholar 

  8. Borg G (1961) Perceived exertion in relation to physical work load and puls-rate. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:105–115

    Google Scholar 

  9. Borg G (1961) Interindividual scaling and perception of muscular force. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:117–125

    Google Scholar 

  10. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  11. Cadore EL, Lhullier FL, Brentano MA et al (2008) Hormonal responses to resistance exercise in long-term trained and untrained middle-aged men. J Strength Cond Res 22:1617–2624

    Article  PubMed  Google Scholar 

  12. Chang HC, Yang YR, Wang PS et al (2011) IGF-I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 20 (im Druck)

  13. Coelho FM, Pereira DS, Lustosa LP et al (2011) Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr 16. (im Druck)

  14. Carro E, Spuch C, Trejo JL et al (2005) Choroid plexus megalinm is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893

    Article  PubMed  CAS  Google Scholar 

  15. Carro E, Trejo JL, Gomez-Isla T et al (2000) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    Article  Google Scholar 

  16. Dunn SE (2000) Insulin-like growth factor I stimulates angiogenesis and production of vascular endothelial growth factor. Growth Horm IGF Res 10(Suppl A):4–42

    Article  Google Scholar 

  17. Fernandez AM, Gonzales de la Vega AG, Planas B, Torres-Aleman I (1999) Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 11:2019–2030

    Article  PubMed  CAS  Google Scholar 

  18. García-Mesa Y, López-Ramos JC, Giménez-Llort L et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24:421–454

    PubMed  Google Scholar 

  19. Goldspink G (2003) Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24:121–126

    Article  PubMed  CAS  Google Scholar 

  20. Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403

    PubMed  CAS  Google Scholar 

  21. Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203

    Article  PubMed  CAS  Google Scholar 

  22. Hameed M, Orrell RW, Cobbold M et al (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254

    Article  PubMed  CAS  Google Scholar 

  23. Heinemeier KM, Olesen JL, Schjerling P et al (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581

    Article  PubMed  CAS  Google Scholar 

  24. Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    Article  PubMed  CAS  Google Scholar 

  25. Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414

    Article  PubMed  CAS  Google Scholar 

  26. Jones SW, Hill RJ, Krasney PA et al (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027

    PubMed  CAS  Google Scholar 

  27. Kavey RE, Daniels SR, Lauer RM et al (2003) American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. American Heart Association. J Pediatr 142:368–372

    Article  PubMed  Google Scholar 

  28. Kinni H, Guo M, Ding JY et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 146:48–55

    Article  Google Scholar 

  29. Künstlinger U (2004) Bewegungsmangel bei Kindern – Fakt oder Fiktion? 3. Konferenz des Clubs of Cologne, 4. 12. 2003 in Köln. Dtsch Z Sportmed 55:29–30

    Google Scholar 

  30. Kunz T (1993) Weniger Unfälle durch Bewegung: Mit Bewegungsspielen gegen Unfälle und Gesundheitsschäden bei Kindergartenkindern. Hofmann, Schorndorf

  31. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  32. Laube W (1990) Zur Rückführung des vegetativ-chronotropen Tonus, der Erholung im neuromuskulären System und den Wechselbeziehungen zwischen beiden Funktionssystemen nach Auslösung einer identischen anaeroben Stoffwechselsituation durch verschiedene Belastungsarten. Dissertation B (Dr. med. sc.), Humboldt-Universität zu Berlin, Bereich Medizin Charité, Physiologisches Institut

  33. Laube W (Hrsg) (2009) Sensomotorisches System. Thieme, Stuttgart

  34. Laube W (2009) Physiologie der Hauptbeanspruchungen des sensomotorischen Systems. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, New York, S 165–227

  35. Laube W (2009) Diagnostik der Leistungen des Sensomotorischen Systems: Koordination – Ausdauer – Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 228–274

  36. Laube W (2009) Deadaptationsprozesse durch Inaktivität und Immobilisation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 370–374

  37. Laube W (2009) Physiologie des Zyklus Belastung – Beanspruchung – Ermüdung – Erholung – Adapatation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 499–555

  38. Laube W (2009) Training der Sensomotorischen Hauptbeanspruchungsformen Koordination, Ausdauer und Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 556–600 und 617–637

  39. Lefaucheur J-P, Drouot X, Cunin P et al (2009) Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132:1463–1417

    Article  PubMed  Google Scholar 

  40. Leite RD, Prestes J, Rosa C et al (2011) Acute effect of resistance training volume on hormonal responses in trained men. J Sports Med Phys Fitness 51:322–328

    PubMed  CAS  Google Scholar 

  41. Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci U S A 101:9833–9838

    Article  PubMed  CAS  Google Scholar 

  42. Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63:693–701

    Google Scholar 

  43. Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307

    Article  PubMed  CAS  Google Scholar 

  44. Matsakas A, Diel P (2005) The growth factor myostatin, a key regulator in skeletal muscle growth and homöostasis. Int J Sports Med 26:83–89

    Article  PubMed  CAS  Google Scholar 

  45. Noble BJ, Robertson RJ (1996) The borg scale: development, administration, and experimental use. In: Noble BJ, Robertson RJ (Hrsg) Perceived exertion. Human Kinetics, Champaign, IL, S 59–92

  46. Peyron R, Garcìa-Larrea L, Grègoire MC et al (1999) Haemodynamic brain responses to acute pain in humans. Brain 122:1765–1779

    Article  PubMed  Google Scholar 

  47. Poehlman ET, Copeland KC (1990) Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 71:1468–1473

    Article  PubMed  CAS  Google Scholar 

  48. Pritzlaff CJ, Wideman L, Weltman JY et al (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol 87:498–504

    PubMed  CAS  Google Scholar 

  49. Radaka Z, Kanekob T, Taharab S et al (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23

    Article  Google Scholar 

  50. Raue U, Slivka D, Jemiolo B et al (2006) Myogenic gene expression at rest and following a bout of resistance exercise in young (18–30 Yr) and old (80–89 Yr) women. J Appl Physiol 101:53–59

    Article  PubMed  CAS  Google Scholar 

  51. Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M, Rodríguez-Jiménez J (2010) Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res 1351:104–114

    Article  PubMed  CAS  Google Scholar 

  52. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-I. Endocrinology 138:3515–3520

    Article  PubMed  CAS  Google Scholar 

  53. Torres-Aleman I (2001) Serum neurotrophic factors and neuroprotective surveillance: focus on IGF-I. Mol Neurobiol 21:153–160

    Article  Google Scholar 

  54. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    PubMed  CAS  Google Scholar 

  55. Praag H van, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesisin the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  56. Praag H van, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431

    Article  PubMed  Google Scholar 

  57. Walsh NP, Gleeson M, Shephard RJ et al (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  58. Zhang SJ, Buchthal B, Lau D et al (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31:4978–4990

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Laube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laube, W. Der Zyklus Belastung – Adaptation. Manuelle Medizin 49, 335–343 (2011). https://doi.org/10.1007/s00337-011-0865-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-011-0865-4

Schlüsselwörter

Keywords

Navigation