Skip to main content

Advertisement

Log in

Methods for vascularization and perfusion of tissue organoids

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Tissue organoids or “mini organs” can be invaluable tools for understanding health and disease biology, modeling tissue dynamics, or screening potential drug candidates. Effective vascularization of these models is critical for truly representing the in vivo tissue environment. Not only is the formation of a vascular network, and ultimately a microcirculation, essential for proper distribution and exchange of oxygen and nutrients throughout larger organoids, but vascular cells dynamically communicate with other cells to modulate overall tissue behavior. Additionally, interstitial fluid flow, mediated by a perfused microvasculature, can have profound influences on tissue biology. Thus, a truly functionally and biologically relevant organoid requires a vasculature. Here, we review existing strategies for fabricating and incorporating vascular elements and perfusion within tissue organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe Y, Watanabe M, Chung S, Kamm RD, Tanishita K, Sudo R (2019) Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng 3(3):036102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aghazadeh Y, Poon F, Sarangi F, Wong FTM, Khan ST, Sun X, Hatkar R, Cox BJ, Nunes SS, Nostro MC (2021) Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 28(11):1936–1949

    Article  CAS  PubMed  Google Scholar 

  • Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Héroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445

    Article  CAS  PubMed  Google Scholar 

  • Ando J, Tsubi H, Korenaga R, Takada Y, Toyama-Sorimachi N, Miyasaka M, Kamiya A (1994) Shear stress inhibits adhesion of cultured mouse endothelial cells to lymhocytes by downregulating VCAM-1 expression. Am J Physiol 267:679–687

    Article  Google Scholar 

  • Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassaneze V, Barauna VG, Lavini-Ramos C, Kalil J, Schettert IT, Miyakawa AA, Krieger JE (2010) Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev 19(3):371–378

    Article  CAS  PubMed  Google Scholar 

  • Beamish JA, He P, Kottke-Marchant K, Marchant RE (2010) Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B 16(5):467–491

    Article  CAS  Google Scholar 

  • Beckman JD, Grazul-Bilska AT, Reynolds LP, Johnson ML, Redmer DA (2006) Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors. Endocrine 29:467–476

    Article  CAS  PubMed  Google Scholar 

  • Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, Gutterman DD (2014) An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. Am J Physiol Heart Circ Physiol 307(11):H1587-1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng Part A 18(19–20):2138–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierwolf J, Lutgehetmann M, Feng K, Erbes J, Deichmann S, Toronyi E, Stieglitz C, Nashan B, Ma PX, Pollok JM (2011) Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol Bioeng 108(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16(11):1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Nunes SS, Sibole SC, Krishnan L, Williams SK, Weiss JA, Hoying JB (2010) Angiogenesis in a microvascular construct for transplantation depends on the method of chamber circulation. Tissue Eng Part A 16(3):795–805

    Article  CAS  PubMed  Google Scholar 

  • Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol 5(10):1262–1271

    Article  CAS  Google Scholar 

  • Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S (2003) Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101(7):2667–2674

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Cerqueira MT, Santos TC, Sampaio-Marques B, Ludovico P, Marques AP, Pirraco RP, Reis RL (2017) Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomater 55:131–143

    Article  CAS  PubMed  Google Scholar 

  • Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93(12):1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2015) In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J Endod 41(5):663–670

    Article  PubMed  Google Scholar 

  • Duran WN, Beuve AV, Sanchez FA (2013) Nitric oxide, S-nitrosation, and endothelial permeability. IUBMB Life 65(10):819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figtree GA, Bubb KJ, Tang O, Kizana E, Gentile C (2017) Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis. Cells Tissues Organs 204(3–4):191–198

    Article  CAS  PubMed  Google Scholar 

  • Galiea PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS (2014) Fluid shear stress threshold regulates angiogenic sprouting. PNAS 111:7968–7973

    Article  CAS  Google Scholar 

  • Garland CJ, Dora KA (2017) EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol 219(1):152–161

    Article  CAS  Google Scholar 

  • Garzoni LR, Rossi MI, de Barros AP, Guarani V, Keramidas M, Balottin LB, Adesse D, Takiya CM, Manso PP, Otazu IB, Meirelles Mde N, Borojevic R (2009) Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells. Exp Cell Res 315(19):3406–3418

    Article  CAS  PubMed  Google Scholar 

  • Goldbrunner RH, Bernstein JJ, Plate KH, Vince GH, Roosen K, Tonn J-C (1999) Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. J Neurosci Res 55:486–495

    Article  CAS  PubMed  Google Scholar 

  • Gruionu G, Stone AL, Schwartz MA, Hoying JB, Williams SK (2010) Encapsulation of ePTFE in prevascularized collagen leads to peri-implant vascularization with reduced inflammation. J Biomed Mater Res A 95(3):811–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H, Martin P (2018) Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J 37(13):e97786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ham O, Jin YB, Kim J, Lee MO (2020) Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem Biophys Res Commun 521(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • Heiss M, Hellstrom M, Kalen M, May T, Weber H, Hecker M, Augustin HG, Korff T (2015) Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J 29(7):3076–3084

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramoto K, Pai H-J, Ino K, Nashimoto Y, Shiku H (2020) Electrochemical measurement of respiratory activity for evaluation of fibroblast spheroids containing endothelial cell networks. Electrochim Acta 340:135979

    Article  CAS  Google Scholar 

  • Hiscox AM, Stone AL, Limesand S, Hoying JB, Williams SK (2008) An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng Part A 14(3):433–440

    Article  CAS  PubMed  Google Scholar 

  • Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R (2019) Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 16(3):255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howden SE, Vanslambrouck JM, Wilson SB, Tan KS, Little MH (2019) Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep 20(4):e47483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32(7):409–419

    Article  CAS  PubMed  Google Scholar 

  • Hsu TW, Lu YJ, Lin YJ, Huang YT, Hsieh LH, Wu BH, Lin YC, Chen LC, Wang HW, Chuang JC, Fang YQ, Huang CC (2021) Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials 272:120765

    Article  CAS  PubMed  Google Scholar 

  • Inamori M, Mizumoto H, Kajiwara T (2009) An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng Part A 15:2029–2037

    Article  CAS  PubMed  Google Scholar 

  • Józkowicz A, Huk I, Nigisch A, Weigel G, Dietrich W, Motterlini R, Dulak J (2003) Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid Redox Signal 5(2):155–162

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Chung M, Ahn J, Lee S, Jeon NL (2016) Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16(21):4189–4199

    Article  CAS  PubMed  Google Scholar 

  • Kitsuka T, Itoh M, Amamoto S, Arai KI, Oyama J, Node K, Toda S, Morita S, Nishida T, Nakayama K (2019) 2-Cl-C.OXT-A stimulates contraction through the suppression of phosphodiesterase activity in human induced pluripotent stem cell-derived cardiac organoids. PLoS ONE 14(7):e0213114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreimendahl F, Marquardt Y, Apel C, Bartneck M, Zwadlo-Klarwasser G, Hepp J, Jockenhoevel S, Baron JM (2019) Macrophages significantly enhance wound healing in a vascularized skin model. J Biomed Mater Res A 107(6):1340–1350

    Article  CAS  PubMed  Google Scholar 

  • Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA (2007) Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol 293(6):H3650–H3658

    Article  CAS  PubMed  Google Scholar 

  • Krishnan L, LaBelle S, Ruehle M, Weiss JA, Hoying JB, Guldberg RE (2018) Mechanical regulation of microvascular growth and remodeling. Springer, New York

    Google Scholar 

  • Kubes P, Granger N (1992) Nitric oxide modulates microvascular permeability. Am Physiol Soc 262:H611–H615

    CAS  Google Scholar 

  • Laib AM, Bartol A, Alajati A, Korff T, Weber H, Augustin HG (2009) Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 4(8):1202–1215

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Menger MD (2017) Spheroids as vascularization units: from angiogenesis research to tissue engineering applications. Biotechnol Adv 35(6):782–791

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc AJ, Krishnan L, Sullivan CJ, Williams SK, Hoying JB (2012) Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 19(8):676–695

    Article  PubMed  Google Scholar 

  • Lee JH, Han YS, Lee SH (2016) Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther 24(3):260–267

    Article  CAS  Google Scholar 

  • Liu D, Chen S, Win Naing M (2021) A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 118(2):542–554

    Article  CAS  PubMed  Google Scholar 

  • Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, Lian MM, Liu M, Aizawa E, Rodriguez Esteban C, Yong KSM, Chen Q, Campistol JM, Fang M, Khor CC, Foo JN, Izpisua Belmonte JC, Xia Y (2019) Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 25(3):373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Majumder S, Tamilarasan KP, Kolluru GK, Muley A, Nair CM, Omanakuttan A, Murty KVGK, Chatterjee S (2007) Activated pericyte attenuates endothelial functions: nitric oxide—cGMP rescues activated pericyte-associated endothelial dysfunctions. Biochem Cell Biol 85(6):709–720

    Article  CAS  PubMed  Google Scholar 

  • Mansour AA, Goncalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36(5):432–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore EM, Suresh V, Ying G, West JL (2018) M0 and M2 macrophages enhance vascularization of tissue engineering scaffolds. Regen Eng Transl Med 4(2):51–61

    Article  CAS  Google Scholar 

  • Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng Part C 19(9):730–737

    Article  CAS  Google Scholar 

  • Muller S, Ader I, Creff J, Lemenager H, Achard P, Casteilla L, Sensebe L, Carriere A, Deschaseaux F (2019) Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures. Sci Rep 9(1):7250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nalbach L, Muller D, Wrublewsky S, Metzger W, Menger MD, Laschke MW, Ampofo E (2021a) Microvascular fragment spheroids: three-dimensional vascularization units for tissue engineering and regeneration. J Tissue Eng 12:20417314211035590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nalbach L, Roma LP, Schmitt BM, Becker V, Korbel C, Wrublewsky S, Pack M, Spater T, Metzger W, Menger MM, Frueh FS, Gotz C, Lin H, Manning Fox JE, MacDonald PE, Menger MD, Laschke MW, Ampofo E (2021b) Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 13(1):e12616

    Article  CAS  PubMed  Google Scholar 

  • Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T, Yokokawa R (2020) Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 229:119547

    Article  CAS  PubMed  Google Scholar 

  • Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD (2016) Stromal vascular fraction: a regenerative reality? Part 1. Current concepts and review of the literature. J Plast Reconstr Aesthet Surg 69(2):170–179

    Article  PubMed  Google Scholar 

  • Nunes SS, Greer KA, Stiening CM, Chen HY, Kidd KR, Schwartz MA, Sullivan CJ, Rekapally H, Hoying JB (2010a) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79(1):10–20

    Article  CAS  PubMed  Google Scholar 

  • Nunes SS, Krishnan L, Gerard CS, Dale JR, Maddie MA, Benton RL, Hoying JB (2010b) Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17(7):557–567

    PubMed  PubMed Central  Google Scholar 

  • Pettinato G, Lehoux S, Ramanathan R, Salem MM, He LX, Muse O, Flaumenhaft R, Thompson MT, Rouse EA, Cummings RD, Wen X, Fisher RA (2019) Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with endothelial cells. Sci Rep 9(1):8920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, Nolta JA, Waldau B (2018) Generation of human vascularized brain organoids. NeuroReport 29(7):588–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitaktong I, Lui C, Lowenthal J, Mattson G, Jung WH, Bai Y, Yeung E, Ong CS, Chen Y, Gerecht S, Hibino N (2020) Early vascular cells improve microvascularization within 3D cardiac spheroids. Tissue Eng Part C 26(2):80–90

    Article  CAS  Google Scholar 

  • Pries AR, Secomb TW (2014) Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology 29(6):446–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Rama-Esendagli D, Yilmaz G, Esendagli G, Guc D (2014) Spheroid formation and invasion capacity are differentially influenced by co-cultures of fibroblast and macrophage cells in breast cancer. Mol Biol Rep 41:2885–2892

    Article  CAS  PubMed  Google Scholar 

  • Rhoads RP, Johnson RM, Rathbone CR, Liu X, Temm-Grove C, Sheehan SM, Hoying JB, Allen RE (2009) Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway. Am J Physiol Cell Physiol 296(6):C1321–C1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA (2005) Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 102(37):13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL, Pober JS (2000) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci USA 97(16):9191–9196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S, Kang KT (2018) Two-cell spheroid angiogenesis assay system using both endothelial colony forming cells and mesenchymal stem cells. Biomol Ther 26(5):474–480

    Article  CAS  Google Scholar 

  • Shepherd BR, Chen HY, Smith CM, Gruionu G, Williams SK, Hoying JB (2004) Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol 24(5):898–904

    Article  CAS  PubMed  Google Scholar 

  • Shepherd BR, Hoying JB, Williams SK (2007) Microvascular transplantation after acute myocardial infarction. Tissue Eng 13(12):2871–2879

    Article  PubMed  Google Scholar 

  • Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X (2020) Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 18(5):e3000705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. PNAS 108:15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiller KL, Freytes DO, Vunjak-Novakovic G (2015) Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng 43(3):616–627

    Article  PubMed  Google Scholar 

  • Stegemann JP, Nerem RM (2003) Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp Cell Res 283(2):146–155

    Article  CAS  PubMed  Google Scholar 

  • Strobel HA, LaBelle SA, Krishnan L, Dale J, Rauff A, Poulson AM, Bader N, Beare J, Aliaj K, Weiss JA, Hoying JB (2020) Stromal cells promote neovascular invasion across tissue interfaces. Front Physiol 11:1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobel HA, Gerton T, Hoying JB (2021) Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication 13:035022

    Article  CAS  Google Scholar 

  • Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li R-K, Nunes SS (2020) Transplanted microvessels improve pluripotent stem cell–derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 12:1–11

    Article  CAS  Google Scholar 

  • Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S (2003) New markers of inflammation and endothelial cell activation: Part I. Circulation 108(16):1917–1923

    Article  PubMed  Google Scholar 

  • Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H (2018) Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 23(6):1620–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526(7574):564–568

    Article  CAS  PubMed  Google Scholar 

  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484

    Article  CAS  PubMed  Google Scholar 

  • Takebe T, Koike N, Sekine K, Fujiwara R, Amiya T, Zheng YW, Taniguchi H (2014) Engineering of human hepatic tissue with functional vascular networks. Organogenesis 10(2):260–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Tevis KM, Cecchi RJ, Colson YL, Grinstaff MW (2017) Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomater 50:271–279

    Article  CAS  PubMed  Google Scholar 

  • Thuringer D, Jego G, Wettstein G, Terrier O, Cronier L, Yousfi N, Hebrard S, Bouchot A, Hazoume A, Joly AL, Gleave M, Rosa-Calatrava M, Solary E, Garrido C (2013) Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3. FASEB J 27(10):4169–4183

    Article  CAS  PubMed  Google Scholar 

  • Tian XF, Heng BC, Ge Z, Lu K, Rufaihah AJ, Fan VT, Yeo JF, Cao T (2008) Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scand J Clin Lab Invest 68(1):58–67

    Article  CAS  PubMed  Google Scholar 

  • Vartanian KB, Chen HY, Kennedy J, Beck SK, Ryaby JT, Wang H, Hoying JB (2006) The non-proteolytically active thrombin peptide TP508 stimulates angiogenic sprouting. J Cell Physiol 206(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Verseijden F, Posthumus-van Sluijs SJ, Farrell E, van Neck JW, Hovius SE, Hofer SO, van Osch GJ (2010) Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplant 19(8):1007–1020

    Article  PubMed  Google Scholar 

  • Von Der Mark K, Gauss V, Von Der Mark H, MÜLler P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267(5611):531–532

    Article  PubMed  Google Scholar 

  • Wang X, Phan DT, Sobrino A, George SC, Hughes CC, Lee AP (2016) Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16(2):282–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Wang L, Guo Y, Zhu Y, Qin J (2018) Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv 8(3):1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U (2004) Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng 10(9–10):1536–1547

    Article  CAS  PubMed  Google Scholar 

  • Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hammerle M, Esk C, Bagley JA, Lindenhofer D, Chen G, Boehm M, Agu CA, Yang F, Fu B, Zuber J, Knoblich JA, Kerjaschki D, Penninger JM (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565(7740):505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R (2014) Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 21(4):290–300

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, Zhang T, Chen X, Chen S, Xu A (2019) Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 70(6):1145–1158

    Article  PubMed  Google Scholar 

  • Yamamoto K, Tanimura K, Watanabe M, Sano H, Uwamori H, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, Tanishita K, Sudo R (2019) Construction of continuous capillary networks stabilized by pericyte-like perivascular cells. Tissue Eng Part A 25(5–6):499–510

    Article  CAS  PubMed  Google Scholar 

  • Yarali ZB, Onak G, Karaman O (2020) Effect of integrin binding peptide on vascularization of scaffold-free microtissue spheroids. Tissue Eng Regen Med 17(5):595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94(5):2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None noted.

Funding

Funding was provided by National Institutes of Health (Grant no. R01AR069297) and National Science Foundation (Grant no. 1842675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Hoying.

Ethics declarations

Conflict of interest

JBH is a partner at Advanced Solutions Life Sciences, which commercializes vascularization technology. HAS and SMM are employees of ASLS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobel, H.A., Moss, S.M. & Hoying, J.B. Methods for vascularization and perfusion of tissue organoids. Mamm Genome 33, 437–450 (2022). https://doi.org/10.1007/s00335-022-09951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-022-09951-2

Navigation