Skip to main content
Log in

Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Dairy cattle are an interesting model for gaining insights into the genes responsible for the large variation between and within mammalian species in the protein and fat content of their milk and their milk volume. Large numbers of phenotypes for these traits are available, as well as full genome sequence of key founders of modern dairy cattle populations. In twenty target QTL regions affecting milk production traits, we imputed full genome sequence variant genotypes into a population of 16,721 Holstein and Jersey cattle with excellent phenotypes. Association testing was used to identify variants within each target region, and gene expression data were used to identify possible gene candidates. There was statistical support for imputed sequence variants in or close to BTRC, MGST1, SLC37A1, STAT5A, STAT5B, PAEP, VDR, CSF2RB, MUC1, NCF4, and GHDC associated with milk production, and EPGN for calving interval. Of these candidates, analysis of RNA-Seq data demonstrated that PAEP, VDR, SLC37A1, GHDC, MUC1, CSF2RB, and STAT5A were highly differentially expressed in mammary gland compared to 15 other tissues. For nine of the other target regions, the most significant variants were in non-coding DNA. Genomic predictions in a third dairy breed (Australian Reds) using sequence variants in only these candidate genes were for some traits more accurate than genomic predictions from 632,003 common SNP on the Bovine HD array. The genes identified in this study are interesting candidates for improving milk production in cattle and could be investigated for novel biological mechanisms driving lactation traits in other mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akers RM (2002) Lactation and the mammary gland. Wiley, Ames

    Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, Casas E, Cheng HH, Clarke L, Couldrey C, Dalrymple BP, Elsik CG, Foissac S, Giuffra E, Groenen MA, Hayes BJ, Huang LS, Khatib H, Kijas JW, Kim H, Lunney JK, McCarthy FM, McEwan JC, Moore S, Nanduri B, Notredame C, Palti Y, Plastow GS, Reecy JM, Rohrer GA, Sarropoulou E, Schmidt CJ, Silverstein J, Tellam RL, Tixier-Boichard M, Tosser-Klopp G, Tuggle CK, Vilkki J, White SN, Zhao S, Zhou H, FAANG Consortium (2015) Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol 25(16):57

    Article  Google Scholar 

  • Braunschweig MH, Leeb T (2006) Aberrant low expression level of bovine β-lactoglobulin is associated with a C to A transversion in the BLG promoter region. J Dairy Sci 89:4414–4419

    Article  PubMed  CAS  Google Scholar 

  • Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, Lund MS (2015) Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J Dairy Sci 98:4107–4116

    Article  PubMed  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brym P, Sa Kamiñski, Rusc A (2004) New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits in Black-and-White and Jersey cattle. J Appl Genet 45:445–452

    PubMed  Google Scholar 

  • Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M (2001) IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain A, Vander Jagt C, Hayes BJ, Marett L, Nguyen T, Goddard ME (2015) Extensive variation between tissues in allele specific expression in an outbred mammal. BMC Genom 16:993

    Article  Google Scholar 

  • Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA, Van Tassell CP, Yang J, Wang S, Matukumalli LK, Da Y (2011) Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genom 12:408

    Article  Google Scholar 

  • Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, Zhang Q, Lu X, Liu GE, Sun D (2014) Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genom 15:226

    Article  Google Scholar 

  • Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng C-X, Robinson GW, Hennighausen L (2004) Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24:8037–8047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, Klopp C, Rocha D, Fritz S, Eggen A, Bowman PJ, Coote D, Chamberlain AJ, Anderson C, VanTassell CP, Hulsegge I, Goddard ME, Guldbrandtsen B, Lund MS, Veerkamp RF, Boichard DA, Fries R, Hayes BJ (2014) Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet 46:858–865

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro A, Zolla L, Scaloni A (2011) The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Mol BioSyst 7:579–597

    Article  PubMed  Google Scholar 

  • de Roos APW, Hayes BJ, Spelman RJ, Goddard ME (2008) Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179:1503–1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8:e1000294

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggen A, Fries R (1995) An integrated cytogenetic and meiotic map of the bovine genome. Anim Genet 26:215–236

    Article  PubMed  CAS  Google Scholar 

  • Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, Mason BA, Goddard ME (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 95:4114–29

    Article  PubMed  CAS  Google Scholar 

  • Forde N, Mehta JP, Minten M, Crowe MA, Roche JF, Spencer TE, Lonergan P (2012) Effects of low progesterone on the endometrial transcriptome in cattle. Biol Reprod 87:124

    Article  PubMed  Google Scholar 

  • Garrick DJ, Taylor JF, Fernando RL (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 41:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Geymayer S, Doppler W (2000) Activation of NF-κb p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated β-casein gene expression. FASEB J 14:1159–1170

    PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0. In VSN International Ltd. Hemel Hempstead, UK

  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P et al (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 12:222–231

    Article  PubMed  CAS  Google Scholar 

  • Hennighausen L, Robinson GW (2008) Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 22:711–721

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollis BW, Roos BA, Draper HH, Lambert PW (1981) Vitamin D and its metabolites in human and bovine milk. J Nutr 111:1240–1248

    PubMed  CAS  Google Scholar 

  • Jakobsson P-J, Thoren S, Morgenstern R, Samuelsson B (1999) Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci 96:7220–7225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang L, Liu J, Sun D, Ma P, Ding X, Yu Y, Zhang Q (2010) Genome wide association studies for milk production traits in Chinese Holstein population. PLoS ONE 5:e13661

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Liu X, Yang J, Wang H, Jiang J, Liu L, He S, Ding X, Liu J, Zhang Q (2014) Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits. BMC Genom 15:1105

    Google Scholar 

  • Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME (2014) Selection for complex traits leaves little or no classic signatures of selection. BMC Genom 15:246

    Article  Google Scholar 

  • Kemper KE, Reich CM, Bowman PJ, Vander Jagt CJ, Chamberlain AJ, Mason BA, Hayes BJ, Goddard ME (2015) Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genet Sel Evol 47:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJM, Rutledge JJ (2008) Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. J Dairy Sci 91:784–793

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2012) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  Google Scholar 

  • Klein CJ (2002) Nutrient requirements for preterm infant formulas. J Nutr 132:1395S–1577S

    PubMed  CAS  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2004) Invited review: β-lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796

    Article  PubMed  CAS  Google Scholar 

  • Lemay D, Neville M, Rudolph M, Pollard K, German J (2007) Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst Biol 1:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, Rincon G, Kriventseva EV, Barris WC, Hinrichs AS, Molenaar AJ (2009) The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol 10:R43

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L (1995) Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci 92:8831–8835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Robinson GW, Wagner K-U, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186

    Article  PubMed  CAS  Google Scholar 

  • Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maxa J, Neuditschko M, Russ I, Förster M, Medugorac I (2012) Genome-wide association mapping of milk production traits in Braunvieh cattle. J Dairy Sci 95:5357–5364

    Article  PubMed  CAS  Google Scholar 

  • Minozzi G, Nicolazzi EL, Stella A, Biffani S, Negrini R, Lazzari B, Ajmone-Marsan P, Williams JL (2013) Genome wide analysis of fertility and production traits in Italian Holstein cattle. PLoS ONE 8:e80219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morris CA, Bottema CDK, Cullen NG, Hickey SM, Esmailizadeh AK, Siebert BD, Pitchford W (2010) Quantitative trait loci for organ weights and adipose fat composition in Jersey and Limousin back-cross cattle finished on pasture or feedlot. Anim Genet 41:589–596

    Article  PubMed  CAS  Google Scholar 

  • Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75:353–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oakes S, Rogers R, Naylor M, Ormandy C (2008) Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 13:13–28

    Article  PubMed  Google Scholar 

  • Pausch H, Wurmser C, Reinhardt F, Emmerling R, Fries R (2015) Short communication: validation of 4 candidate causative trait variants in 2 cattle breeds using targeted sequence imputation. J Dairy Sci 98:4162–4167

    PubMed  CAS  Google Scholar 

  • Pimentel ECG, Bauersachs S, Tietze M, Simianer H, Tetens J, Thaller G, Reinhardt F, Wolf E, König S (2011) Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim Genet 42:251–262

    Article  PubMed  CAS  Google Scholar 

  • Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ (2010) A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J Dairy Sci 93:3331–3345

    Article  PubMed  CAS  Google Scholar 

  • Raven L, Cocks BG, Goddard ME, Pryce JE, Hayes BJ (2014a) Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Genet Sel Evol 46:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Raven L, Cocks BG, Hayes BJ (2014b) Multi-breed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genom 15:62–76

    Article  Google Scholar 

  • Royal M, Flint A, Woolliams J (2002) Genetic and phenotypic relationships among endocrine and traditional fertility traits and production traits in Holstein-Friesian dairy cows. J Dairy Sci 85:958–967

    Article  PubMed  CAS  Google Scholar 

  • Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M (2012) Linking disease associations with regulatory information in the human genome. Genome Res 22:1748–1759

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schennink A, Bovenhuis H, Léon-Kloosterziel KM, Van Arendonk JAM, Visker MHPW (2009) Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim Genet 40:909–916

    Article  PubMed  CAS  Google Scholar 

  • Selvaggi M, Dario C, Normanno G, Celano GV, Dario M (2009) Genetic polymorphism of STAT5A protein: relationships with production traits and milk composition in Italian Brown cattle. J Dairy Res 76:441–445

    Article  PubMed  CAS  Google Scholar 

  • Sigl T, Meyer H, Wiedemann S (2012) Gene expression of six major milk proteins in primary bovine mammary epithelial cells isolated from milk during the first twenty weeks of lactation Czech. J Anim Sci 57:469–480

    CAS  Google Scholar 

  • Streuli CH, Edwards GM, Delcommenne M, Whitelaw CBA, Burdon TG, Schindler C, Watson CJ (1995) Stat5 as a target for regulation by extracellular matrix. J Biol Chem 270:21639–21644

    Article  PubMed  CAS  Google Scholar 

  • Sutherland K, Lindeman G, Visvader J (2007) The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 12:15–23

    Article  PubMed  Google Scholar 

  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850

    Article  PubMed  CAS  Google Scholar 

  • van Binsbergen R, Bink M, Calus M, van Eeuwijk F, Hayes B, Hulsegge I, Veerkamp R (2014) Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol 46:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wurmser C, Pausch H, Jung S, Reinhardt F, Tetens J, Thaller G, Fries R (2012) Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS ONE 7:e40711

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Welsh J, Wietzke JA, Zinser GM, Smyczek S, Romu S, Tribble E, Welsh JC, Byrne B, Narvaez CJ (2002) Impact of the vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer. J Steroid Biochem Mol Biol 83:85–92

    Article  PubMed  CAS  Google Scholar 

  • Wojcik KY, Rechtman DJ, Lee ML, Montoya A, Medo ET (2009) Macronutrient analysis of a nationwide sample of donor breast milk. J Am Diet Assoc 109:137–140

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The partners in the 1000 bull genomes project are sincerely thanked for access to whole genome sequence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (XLSX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raven, LA., Cocks, B.G., Kemper, K.E. et al. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle. Mamm Genome 27, 81–97 (2016). https://doi.org/10.1007/s00335-015-9613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-015-9613-8

Keywords

Navigation