Skip to main content
Log in

Modulation Analysis of the Stochastic Camassa–Holm Equation with Pure Jump Noise

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the stochastic Camassa–Holm equation with pure jump noise. We prove that if the initial condition of the solution is a solitary wave solution of the unperturbed equation, the solution decomposes into the sum of a randomly modulated solitary wave and a small remainder. Moreover, we derive the equations for the modulation parameters and show that the remainder converges to the solution of a stochastic linear equation as amplitude of the jump noise tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albeverio, S., Brzeźniak, Z., Daletskii, A.: Stochastic Camassa-Holm equation with convection type noise. J. Differ. Equ. 276, 404–432 (2021)

    MathSciNet  Google Scholar 

  • Applebaum D.: Lévy processes and stochastic calculus, Cambridge university press (2009)

  • Arnold, L.: Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models. In: Imkeller, P., von Stroch, (eds.), Stochastic Climate Models. In: Progr. Probab., vol. 49, Birkhäuser, Basel (2001)

  • Bendall, T., Cotter, C.J., Holm, D.D.: Perspectives on the formation of peakons in the stochastic Camassa-Holm equation, In: Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences 477(2250): 20210224 (2021)

  • Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  Google Scholar 

  • Brzeźniak, Z., Manna, U.: Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation driven by pure jump noise. Commun. Math. Phys. 371, 1071–1129 (2019)

    MathSciNet  Google Scholar 

  • Brzeźniak, Z., Manna, U., Panda, A.: Martingale solutions of nematic liquid crystals driven by pure jump noise in the marcus canonical form. J. Differ. Equ. 266(10), 6204–6283 (2019)

    MathSciNet  Google Scholar 

  • Brzeźniak, Z., Liu, W., Zhu, J.: The stochastic Strichartz estimates and stochastic nonlinear Schrödinger equations driven by Lévy noise. J. Funct. Anal. 281, 109021 (2021)

    Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  Google Scholar 

  • Camassa, R., Holm, D.D., Hyman, J.: An new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Google Scholar 

  • Cao, C.S., Holm, D.D., Titi, E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16, 167–178 (2004)

    MathSciNet  Google Scholar 

  • Carmona, R.A., Nualart, D.: Nonlinear Stochastic Integrators, Equations and Flows. Stochastics Monographs, vol. 6. Gordon and Breach Science Publishers, New York (1990)

  • Chechkin, A., Pavlyukevich, I.: Marcus versus Stratonovich for systems with jump noise. J. Phys. A Math. Theor. 47(34), 342001 (2014)

    MathSciNet  Google Scholar 

  • Chen, Y., Gao, H., Guo, B.: Well posedness for stochastic Camassa-Holm equation. J. Differ. Equ. 253, 2353–2379 (2012)

    MathSciNet  Google Scholar 

  • Chen, Y., Gao, H.: Well-posedness and large deviations for a class of SPDEs with Lévy noise. J. Differ. Equ. 263, 5216–5252 (2017)

    Google Scholar 

  • Chen, Y., Duan, J., Gao, H.: Gloabl well posedness for stochastic Camassa-Holm equation. Commun. Math. Sci. 19(3), 607–627 (2021)

    MathSciNet  Google Scholar 

  • Chen, Y., Duan, J., Gao, H.: Wave-breaking and moderate deviations of the stochastic Camassa-Holm equation with pure jump noise. Phys. D 424, 132944 (2021)

    MathSciNet  Google Scholar 

  • Chen, Y., Duan, J., Gao, H.: Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa-Holm system. Ann. Appl. Probab. 33, 2734–2785 (2023)

    MathSciNet  Google Scholar 

  • Chen, Y., Li, X.: On the stochastic two-component Camassa-Holm system driven by pure jump noise. J. Differ. Equ. 339, 476–508 (2022)

    MathSciNet  Google Scholar 

  • Coclite, G., Holden, H., Karlsen, K.: Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J. Math. Anal. 37, 1044–1069 (2006)

    MathSciNet  Google Scholar 

  • Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  Google Scholar 

  • Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457, 953–970 (2001)

    MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51, 475–504 (1998)

    MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: Global weak solutions for a shallow water equation. Indiana Univ. Math. J. 47(4), 1527–1545 (1998)

    MathSciNet  Google Scholar 

  • Constantin, A., Escher, J.: On the blow-up rate and the blow-up of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    MathSciNet  Google Scholar 

  • Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa-Holm equation. Inv. Probl. 22, 2197–2207 (2006)

    MathSciNet  Google Scholar 

  • Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A Math. Gen. 35, R51–R79 (2002)

    MathSciNet  Google Scholar 

  • Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    MathSciNet  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    MathSciNet  Google Scholar 

  • Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. 211, 45–61 (2000)

    MathSciNet  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of the Camassa-Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    MathSciNet  Google Scholar 

  • Crisan, D., Holm, D.D.: Wave breaking for the stochastic Camassa-Holm equation. Phys. D 376–377, 138–143 (2018)

    MathSciNet  Google Scholar 

  • Danchin, R.: A few remarks on the Camassa-Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MathSciNet  Google Scholar 

  • de Bouard, A., Debussche, A.: Random modulation of solitons for the stochastic Korteweg-de Vries equation. Ann. I. H. Poincaré-AN 24, 251–278 (2007)

    MathSciNet  Google Scholar 

  • de Bouard, A., Fukuizumi, R.: Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation. Asymptot. Anal. 63, 189–235 (2009)

    MathSciNet  Google Scholar 

  • Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations, Elsevier (2014)

  • El Dika, K., Molinet, L.: Exponential decay of \(H^1\)-localized solutions and stability of the train of \(N\) solitary waves for the Camassa-Holm equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365, 2313–2331 (2007)

    MathSciNet  Google Scholar 

  • El Dika, K., Molinet, L.: Stability of multipeakons. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 1517–1532 (2009)

    MathSciNet  Google Scholar 

  • Fuchssteiner, B., Fokas, A.: Symplectic structures, their B\(\ddot{a}\)klund transformations and hereditary symmetries. Phys. D 4(1), 47–66 (1981)

    MathSciNet  Google Scholar 

  • Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generralizations of the Camassa-Holm equation. Phys. D 95, 296–343 (1996)

    Google Scholar 

  • Galimberti, L., Karlsen, H., Pang, P.H.C.: Global existence of dissipative solution to the Camassa-Holm equation with transport noise, arXiv: 2211.07046v1

  • Guo, Z., Liu, X., Molinet, L., Yin, Z.: Ill-posedness of the Camassa-Holm and related equations in the critical space. J. Differ. Equ. 266, 1698–1707 (2019)

    MathSciNet  Google Scholar 

  • Hartmann, L.S., Pavlyukevich, I.: First Order Linear Marcus SPDEs, arXiv:2303.00674

  • Holden, H., Raynaud, X.: Global conservative multipeakon solutions of the Camassa-Holm equation. J. Hyperbolic Differ. Equ. 4, 39–64 (2007)

    MathSciNet  Google Scholar 

  • Holden, H., Raynaud, X.: Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view. Comm. Partial Differ. Equ. 32, 1511–1549 (2007)

    MathSciNet  Google Scholar 

  • Holden, H., Raynaud, X.: Dissipative solutions for the Camassa-Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    MathSciNet  Google Scholar 

  • Holden, H., Karlsen, K.H., Pang, P.H.: Global well-posedness of the viscous Camassa-Holm equation with gradient noise. Discrete Contin. Dyn. Syst. 43, 568–618 (2023)

    MathSciNet  Google Scholar 

  • Holly, K., Wiciak, M.: Compactness method applied to an abstract nonlinear parabolic equation. Cracow University of Technology, Selected problems of Mathematics (1995)

  • Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471, 20140963 (2015)

    MathSciNet  Google Scholar 

  • Holm, D.D., Tyranowski, T.: Variational principles for stochastic soliton dynamics. Proc. R. Soc. A 472, 20150827 (2016)

    MathSciNet  Google Scholar 

  • Johnson, R.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    MathSciNet  Google Scholar 

  • Johnson, R.: On solutions of the Camassa-Holm equation. Proc. Roy. Soc. Lond. A. 459, 1687–1708 (2003)

    MathSciNet  Google Scholar 

  • Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  • Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applicätions. Birkhauser, New York (2013)

    Google Scholar 

  • Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Real and Stochastic Analysis, Trends in Mathematics, Birkhäuser, Boston, MA, (2004), pp. 305-373

  • Li, Y., Oliver, P.: Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Google Scholar 

  • Li, Y., Zhang, J.: The multiple-soliton solutions of the Camassa-Holm equation. Proc. R. Soc. Lond. A 460, 2617–2627 (2004)

    MathSciNet  Google Scholar 

  • Marcus, S.I.: Modeling and approximation of stochastic differential equations driven by semimartingales, Stochastics. Int. J. Probab. Stoch. Process. 4(3), 223–245 (1981)

    MathSciNet  Google Scholar 

  • Matsuno, Y.: Parametric representation for the multisoliton solution of the Camassa-Holm equation. J. Phys. Soc. Jpn. 74, 1983–1987 (2005)

    MathSciNet  Google Scholar 

  • Misiolek, G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    MathSciNet  Google Scholar 

  • Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Lévy noise, In: Encyclopedia of Mathematics and Its Applications, vol. 113, Cambridge University Press, Cambridge (2007)

  • Tang, H.: On the pathwise solutions to the Camassa-Holm equation with multiplicative noise. SIAM J. Math. Anal. 50(1), 1322–1366 (2018)

    MathSciNet  Google Scholar 

  • Wadati, M., Akutsu, Y.: Stochastic Korteweg-de Vries equation with and without damping. J. Phys. Soc. Jpn. 53, 3342–3350 (1984)

    MathSciNet  Google Scholar 

  • Wang, Z., Liu, Y.: Stability of smooth multi-solitons for the Camassa-Holm equation. Calc. Var. Partial Differ. Equ. 61(2), 36 (2022)

    MathSciNet  Google Scholar 

  • Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 (2000)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to the referee for careful reading of the manuscript and for their comments, which have improved the present work. This work is partially supported by China NSF Grant Nos. 12171084, 12141107, the Guangdong-Dongguan Joint Research Grant 2023A1515140016, Zhejiang Provincial NSF of China under Grant Nos. LZJWY22E060002, LZ23A010007 and the fundamental Research Funds for the Central Universities No. RF1028623037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. General Itô Formula for Marcus Canonical SDEs

Appendix A. General Itô Formula for Marcus Canonical SDEs

First, we present the following Itô formula for the Marcus canonical SDEs.

Lemma A.1

(Itô formula, Brzeźniak and Manna (2019), Theorem B.2) Assume that U is a Hilbert space. Let X be a U-valued process given by

$$\begin{aligned} X(t)=X_0+\int _0^ta(X(s))ds+\int _0^t\int _{\mathbb {Z}}f(X(s-))\diamond dL(s),\;\;t\ge 0, \end{aligned}$$

where \(a, f: U\rightarrow U\) are \(\mathcal {F}_t\)-adapted random mappings. Let V be a separable Hilbert space. Let \(h: U\rightarrow V\) be a function of class \(C^1\) such that the first derivative \(h':U\rightarrow L(U; V)\) is \((p-1)\)-Hölder continuous. Then for every \(t > 0\), we have \(\mathbb {P}\)-a.s.

$$\begin{aligned} h(X(t))=&h(X_0)+\int _0^th'(X(s))(a(X(s)))ds\\&+\int _0^t\int _{\mathbb {Z}} [h(\Phi (1,z,X(s-)))-h(X(s-))]\tilde{\mathcal {N}}(ds,\textrm{d}z)\\&+\int _0^t\int _{\mathbb {Z}} [h(\Phi (1,z,X(s)))-h(X(s))-zh'(X(s))f(X(s))]\vartheta (\textrm{d}z)ds, \end{aligned}$$

where \(\Phi (v):=\Phi (v,z,w)\) solves

$$\begin{aligned} \frac{d}{dt}\Phi (v)=zf(\Phi (v)), \end{aligned}$$

with initial condition \(\Phi (0)=w.\)

Next, we give the following general Itô formula for a pair of Marcus canonical SDEs.

Lemma A.2

(general Itô formula) Assume that U is a Hilbert space. Let X be a U-valued process and Y be a \(\mathbb {R}\)-valued process given by

$$\begin{aligned}&X(t,x)=X_0+\int _0^ta(X(s,x))ds+\int _0^t\int _{\mathbb {Z}}f(X(s-,x))\diamond dL(s),\\&Y(t)=Y_0+\int _0^tb(Y(s))ds+\int _0^t\int _{\mathbb {Z}}g(Y(s-)) \tilde{\mathcal {N}}(ds,\textrm{d}z). \end{aligned}$$

where \(a, f: U\rightarrow U\) and \(C^1\)-class functions \(b, g: \mathbb {R}\rightarrow \mathbb {R}\) are \(\mathcal {F}_t\)-adapted random mappings. Then the following formula holds

$$\begin{aligned}&X(t, Y(t))=X(0,Y_0)+\int _0^ta(X(s,Y(s)))ds\nonumber \\&+\int _0^tDX(s,Y(s))b(X(s,Y(s)))ds\nonumber \\&+\int _0^t\int _{\mathbb {Z}}(\Phi (1,z,X(s-, Y(s-)))-X(s-, Y(s-)))\tilde{\mathcal {N}}(ds,\textrm{d}z)\nonumber \\&+\int _0^t\int _{\mathbb {Z}}(\Phi (1,z,X(s-, Y(s-)+g(Y(s-)))-\Phi (1,z,X(s-, Y(s-))))\tilde{\mathcal {N}}(ds,\textrm{d}z)\nonumber \\&+\int _0^t\int _{\mathbb {Z}}(\Phi (1,z,X(s, Y(s)+g(Y(s))))-X(s, Y(s))\nonumber \\&-f(X(s,Y(s)))-DX(s,Y)g(Y))\vartheta (\textrm{d}z)ds, \end{aligned}$$
(A1)

where \(\Phi (v)=\Phi (v,z,w_1)\) solves the following equations:

$$\begin{aligned} \frac{d}{dv}\Phi (v)=zf(\Phi (v)), \;\;\Phi (0)=w_1. \end{aligned}$$

Proof

The proof is similar to Theorem III.3.3 in Carmona and Nualart (1990) and Theorem 4.3 in [45].

Consider a sequence of mollifiers \(h_n\in C^\infty _c(\mathbb {R}, \mathbb {R})\) given by \(h_n(x) = nh(nx)\), where \(h \in C^\infty _c(\mathbb {R}, \mathbb {R})\) supported on a unit ball \(|x| \le 1, h(x) \ge 0\), and such that \(\int _\mathbb {R}h(x)dx=1\).

Using Itô formula to \(h_n(Y- x) \), we have

$$\begin{aligned}&h_n(Y(t)-x)=h_n(Y_0-x)+\int _0^th_n'(Y(s)-x)(b(Y(s)))ds\\&+\int _0^t\int _{\mathbb {Z}} [h_n(Y(s-)-x+g(Y(s-)))-h_n(Y(s-)-x)]\tilde{\mathcal {N}}(ds,\textrm{d}z)\\&+\int _0^t\int _{\mathbb {Z}} [h_n(Y(s)-x+g(Y(s)))-h_n(Y(s)-x)-zh_n'(Y(s)-x)g(Y(s))]\vartheta (\textrm{d}z)ds, \end{aligned}$$

Then, apply Itô product formula to \(X(t,x)h_n(Y(t)-x)\) to yield

$$\begin{aligned}&X(t,x)h_n(Y(t)-x)=X_0h_n(Y_0-x) +\int _0^th_n(Y(s)-x)a(X(s,x))ds\nonumber \\&+\int _0^t\int _{\mathbb {Z}}h_n(Y(s)-x) [\Phi (1,z,X(s,x))-X(s,x)-zf(X(s,x))]\vartheta (\textrm{d}z)ds\nonumber \\&+\int _0^t\int _{\mathbb {Z}}X(s,x) [h_n(Y(s)-x+g(Y(s)))-h_n(Y(s)-x)-zh_n'(Y(s)-x)g(Y(s))]\vartheta (\textrm{d}z)ds\nonumber \\&+\int _0^t\int _{\mathbb {Z}} [\Phi (1,z,X(s,x))-X(s,x)][h_n(Y(s)-x+g(Y(s)))-h_n(Y(s)-x)]\vartheta (\textrm{d}z)ds\nonumber \\&+\int _0^tX(s,x)h_n'(Y(s)-x)(b(Y(s)))ds\nonumber \\&+\int _0^t\int _{\mathbb {Z}}h_n(Y(s-)-x)[\Phi (1,z,X(s-,x))-X(s-,x)]\tilde{\mathcal {N}}(ds,\textrm{d}z)\nonumber \\&+\int _0^t\int _{\mathbb {Z}}\Phi (1,z,X(s-,x)) [h_n(Y(s-)-x+g(Y(s-)))-h_n(Y(s-)-x)]\tilde{\mathcal {N}}(ds,\textrm{d}z), \end{aligned}$$
(A.2)

Taking the Lebesgue integrals on both sides of (A.2), letting \(n\rightarrow \infty \) and following the proof in [45], we get (A1). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Duan, J., Gao, H. et al. Modulation Analysis of the Stochastic Camassa–Holm Equation with Pure Jump Noise. J Nonlinear Sci 34, 58 (2024). https://doi.org/10.1007/s00332-024-10037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10037-3

Keywords

Mathematics Subject Classification

Navigation