Skip to main content
Log in

Wave-breaking and weak instability for the stochastic modified two-component Camassa–Holm equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the stochastic modified two-component Camassa–Holm equations. For the periodic boundary value problem for this SPDE, we first study the local existence, uniqueness and blow-up criterion of a solution in Sobolev spaces \(H^s\) with \(s>5/2\). Particularly, for the linear non-autonomous noise case, we study the wave-breaking phenomenon. When wave-breaking occurs, we estimate the corresponding probability and the breaking rate of the solutions. Finally, we study the noise effect on the dependence on initial data. It is shown that the noise cannot improve the stability of exiting times and the continuity of solution map at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Brzeźniak, Z., Daletskii, A.: Stochastic Camassa–Holm equation with convection type noise. J. Differ. Equ. 276, 404–432 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso-Orán, D., Miao, Y., Tang, H.: Global existence, blow-up and stability for a stochastic transport equation with non-local velocity. J. Differ. Equ. 335, 244–293 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso-Orán, D., Rohde, C., Tang, H.: A local-in-time theory for singular SDEs with applications to fluid models with transport noise. J. Nonlinear Sci. 31(6), Paper No. 98 (2021)

  4. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Duan, J., Gao, H.: Global well-posedness of the stochastic Camassa–Holm equation. Commun. Math. Sci. 19(3), 607–627 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Gao, H.: Well-posedness and large deviations of the stochastic modified Camassa–Holm equation. Potential Anal. 45(2), 331–354 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Gao, H., Guo, B.: Well-posedness for stochastic Camassa–Holm equation. J. Differ. Equ. 253(8), 2353–2379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Li, X.: On the stochastic two-component Camassa–Holm system driven by pure jump noise. J. Differ. Equ. 339, 476–508 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Miao, Y., Shi, S.: Global existence and wave breaking for a stochastic two-component Camassa–Holm system. J. Math. Phys. 64(1), Paper No. 011505, 28 (2023)

  10. Constantin, A.: The Hamiltonian structure of the Camassa–Holm equation. Exposit. Math. 15(1), 53–85 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sci. 10(3), 391–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A.: On the scattering problem for the Camassa–Holm equation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2008), 953–970 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52(8), 949–982 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galimberti, L., Holden, H., Karlsen, K.H., Pang, P.H.C.: Global existence of dissipative solutions to the Camassa–Holm equation with transport noise. arXiv:2211.07046 (2022)

  16. Glatt-Holtz, N.E., Vicol, V.C.: Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab. 42(1), 80–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guan, C., Karlsen, K.H., Yin, Z.: Well-posedness and blow-up phenomena for a modified two-component Camassa–Holm equation. In: Proceedings of the 2008–2009 Special Year in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 526, pp. 199–220. American Mathematical Society, Providence (2010)

  18. Guan, C., Yin, Z.: Global weak solutions for a modified two-component Camassa–Holm equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28(4), 623–641 (2011)

  19. Himonas, A.A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22(3–4), 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Himonas, A.A., Kenig, C., Misiolek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35(6), 1145–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holden, H., Karlsen, K.H., Pang, P.H.C.: Global well-posedness of the viscous Camassa–Holm equation with gradient noise. Discrete Contin. Dyn. Syst. 43(2), 568–618 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holm, D.D., Ó Náraigh, L., Tronci, C.: Singular solutions of a modified two-component Camassa–Holm equation. Phys. Rev. E (3), 79(1):016601, 13 (2009)

  23. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Liu, H., Tang, H.: Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in \({\mathbb{R} }^2\). Stoch. Process. Appl. 135, 139–182 (2021)

    Article  MATH  Google Scholar 

  25. Liu, J., Yin, Z.: On the blow-up phenomena for a modified periodic two-component Camassa–Holm equation. IMA J. Appl. Math. 77(4), 563–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miao, Y., Rohde, C., Tang, H.: Well-posedness for a stochastic Camassa–Holm type equation with higher order non-linearities. Stoch. Partial Differ. Equ. Anal. Comput. (2023). https://doi.org/10.1007/s40072-023-00291-z

    Article  Google Scholar 

  27. Miao, Y., Wang, Z., Zhao, Y.: Noise effect in a stochastic generalized Camassa–Holm equation. Commun. Pure Appl. Anal. 21(10), 3529–3558 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Röckner, M., Zhu, R., Zhu, X.: Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise. Stoch. Process. Appl. 124(5), 1974–2002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rohde, C., Tang, H.: On a stochastic Camassa–Holm type equation with higher order nonlinearities. J. Dyn. Differ. Equ. 33(4), 1823–1852 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rohde, C., Tang, H.: On the stochastic Dullin–Gottwald–Holm equation: global existence and wave-breaking phenomena. Nonlinear Differ. Equ. Appl. 28(1), Paper No. 5 (2021)

  31. Tan, W., Yin, Z.: Global conservative solutions of a modified two-component Camassa–Holm shallow water system. J. Differ. Equ. 251(12), 3558–3582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tang, H.: On the pathwise solutions to the Camassa–Holm equation with multiplicative noise. SIAM J. Math. Anal. 50(1), 1322–1366 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, H.: On stochastic Euler–Poincaré equations driven by pseudo-differential/multiplicative noise. J. Funct. Anal. (2023). https://doi.org/10.1016/j.jfa.2023.110075

  34. Tang, H., Liu, Z.: Continuous properties of the solution map for the Euler equations. J. Math. Phys. 55(3), 031504, 10 (2014)

  35. Tang, H., Liu, Z.: Well-posedness of the modified Camassa–Holm equation in Besov spaces. Z. Angew. Math. Phys. 66(4), 1559–1580 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang, H., Shi, S., Liu, Z.: The dependences on initial data for the b-family equation in critical Besov space. Monatsh. Math. 177(3), 471–492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, H., Wang, Z.-A.: Strong solutions to a nonlinear stochastic aggregation-diffusion equation. Commun. Contemp. Math. (2023). https://doi.org/10.1142/S0219199722500730

    Article  Google Scholar 

  38. Tang, H., Yang, A.: Noise effects in some stochastic evolution equations: global existence and dependence on initial data. Ann. Inst. Henri Poincaré Probab. Stat. 59(1), 378–410 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tang, H., Zhao, Y., Liu, Z.: A note on the solution map for the periodic Camassa–Holm equation. Appl. Anal. 93(8), 1745–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Taylor, M.E.: Commutator estimates. Proc. Am. Math. Soc. 131(5), 1501–1507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their great gratitude to the anonymous referee for his/her important suggestions, which hav e led to a significant improvement of this paper. Y. Zhao is supported by Basic and Applied Basic Research Project of Guangzhou under the Grant Numbers 202102020283 and 202102021152. Y. Li is supported by NSFC key project under the Grant Number 11831003, and NSFC under the Grant Number 11971356. F. Chen is supported by the NSFC under Grant Number 12101345 and Natural Science Foundation of Shandong Province of China with Grant Number ZR2021QA017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongye Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, Y. & Chen, F. Wave-breaking and weak instability for the stochastic modified two-component Camassa–Holm equations. Z. Angew. Math. Phys. 74, 159 (2023). https://doi.org/10.1007/s00033-023-02030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02030-9

Keywords

Mathematics Subject Classification

Navigation