Skip to main content
Log in

General Relativistic Lagrangian Continuum Theories Part I: Reduced Variational Principles and Junction Conditions for Hydrodynamics and Elasticity

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We establish a Lagrangian variational framework for general relativistic continuum theories that permits the development of the process of Lagrangian reduction by symmetry in the relativistic context. Starting with a continuum version of the Hamilton principle for the relativistic particle, we deduce two classes of reduced variational principles that are associated to either spacetime covariance, which is an axiom of the continuum theory, or material covariance, which is related to particular properties of the system such as isotropy. The covariance hypotheses and the Lagrangian reduction process are efficiently formulated by making explicit the dependence of the theory on given material and spacetime tensor fields that are transported by the world-tube of the continuum via the push-forward and pull-back operations. It is shown that the variational formulation, when augmented with the Gibbons–Hawking–York (GHY) boundary terms, also yields the Israel–Darmois junction conditions between the solution at the interior of the relativistic continua and the solution describing the gravity field produced outside from it. The expression of the first variation of the GHY term with respect to the hypersurface involves some extensions of previous results that we also derive in the paper. We consider in detail the application of the variational framework to relativistic fluids and relativistic elasticity. For the latter case, our setting also allows to clarify the relation between formulations of relativistic elasticity based on the relativistic right Cauchy-Green tensor or on the relativistic Cauchy deformation tensor. The setting developed here will be further exploited for modeling purpose in subsequent parts of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note the different notation used for the Riemannian metric g on the ambient space \( \mathcal {S} \) in Sect. 2 and the Lorentzian metric \(\textsf{g}\) on spacetime \( \mathcal {M} \) used here.

  2. Explicitly, for \( \alpha ^1,..., \alpha ^r \in T^*_X \mathcal {D} \) and \( u _1,...,u_s \in T_X \mathcal {D} \), we have

    $$\begin{aligned} \Gamma (X)( \alpha ^1,..., \alpha ^r, u_1,...,u_s)= \gamma ( \Phi (X))\left( (T^*_X \Phi )^{-1} ( \alpha ^1 ),... (T^*_X \Phi )^{-1} ( \alpha ^r ), T_X \Phi (u_1),..., T_X \Phi (u_s)\right) \end{aligned}$$

    with \(T_X \Phi :T_X \mathcal {D} \rightarrow T_{ \Phi (X)} \mathcal {M} \) and \(T^*_X \Phi : T_{ \Phi (X)}^* \mathcal {M} \rightarrow T_X ^*\mathcal {D}\) isomorphisms and \(T_X \mathcal {M} =T_{ \Phi (X)}[ \Phi ( \mathcal {D} )]\) for all \(X \in \mathcal {D} \).

  3. No confusion should arise with the same symbol \( \delta \) also used for variations.

References

  • Andersson, N., Comer, G.L.: Relativistic fluid dynamics: physics for many different scales. Living Rev. Relativ. 24, 3 (2021)

    Article  ADS  Google Scholar 

  • Andersson, N.: A multifluid perspective on multimessenger modeling. Front. Astron. Space Sci. 8, 659476 (2021)

    Article  Google Scholar 

  • Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  Google Scholar 

  • Bau, P.B., Wasserman, I.: Relativistic, finite temperature multifluid hydrodynamics in a neutron star from a variational principle. Phys. Rev. D 102, 063011 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Barrabès, C., Frolov, V.P.: How many new worlds are inside a black hole? Phys. Rev. D 53(6), 3215–3223 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Beig, R., Schmidt, B.G.: Relativistic elasticity. Class. Quantum Grav. 20, 889–904 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Berezin, V.A., Kuzmin, V.A., Tkachev, I.I.: Dynamics of bubbles in general relativity. Phys. Rev. D 36(10), 2919–2944 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Blau, S.K., Guendelman, E.I., Guth, A.H.: Dynamics of false-vacuum bubbles. Phys. Rev. D 35(6), 1747–1766 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Boehler, J.P. (ed.): Applications of Tensor Functions in Solid Mechanics, International Center for Mechanical Sciences, vol. 292. Springer, New York (1987)

  • Bonnor, W.B., Vickers, P.A.: Junction conditions in general relativity, General Relativity and Gravitation, 13(1), (1981)

  • Brown, D.J.: Elasticity theory in general relativity. Class. Quantum Grav. 38(8), 085017 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Carter, B.: Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Comm. Math. Phys. 30, 261–286 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Carter, B., Khalatnikov, I.M.: Equivalence of convective and potential variational derivations of covariant superfluid dynamics. Phys. Rev. D. 45(12), 4536–4544 (1992)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Carter, B., Langlois, D.: Kalb–Ramond coupled vortex fibration model for relativistic superfluid dynamics. Nucl. Phys. B 454, 402–424 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Carter, B., Langlois, D.: Relativistic models for superconducting-superfluid mixtures. Nucl. Phys. B 531, 478–504 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Carter, B., Quintana, H.: Foundations of general relativistic high pressure elasticity theory. Proc. Roy. Soc. London A331, 57–83 (1972)

    ADS  MathSciNet  Google Scholar 

  • Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian Reduction by Stages, Memoirs of the AMS, 152(722), (2001)

  • Darmois, G.: Mémorial des Sciences Mathématiques, vol. 25. Gauthier-Villars, Paris (1927)

    Google Scholar 

  • Deng, H., Vilenkin, A.: Primordial black hole formation by vacuum bubbles. J. Cosm. Astr. Phys. 2017(12), 044 (2017)

    Article  MathSciNet  Google Scholar 

  • Deng, H.: Primordial black hole formation by vacuum bubbles. Part II. J. Cosm. Astr. Phys. 2020(09), 023 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  • DeWitt, B.: The quantization of geometry. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  • Dogan, G., Nochetto, R.H.: First variation of the general curvature-dependent surface energy. ESAIM Math. Model. Numer. Anal. 46(1), 59–79 (2011)

    Article  MathSciNet  Google Scholar 

  • Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua II - Fluids and Complex Media. Springer-Verlag, New York (1990)

    Google Scholar 

  • Fayos, F., Jaén, X., Llanta, E., Senovilla, J.M.M.: Interiors of Vaidya’s radiating metric: gravitational collapse. Phys. Rev. D 45(8), 2732–2738 (1992)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Fayos, F., Senovilla, J.M., Torres, R.: General matching of two spherically symmetric space-times. Phys. Rev. D 54, 4862–4872 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Feng, J.C., Carloni, S.: New class of generalized coupling theories. Phys. Rev. D 101, 064002 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Gavassino, L., Antonelli, M., Haskell, B.: Multifluid modelling of relativistic radiation hydrodynamics. Symmetry 12(9), 1543 (2020)

    Article  ADS  CAS  Google Scholar 

  • Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22(4), 463–497 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752 (1977)

    Article  ADS  CAS  Google Scholar 

  • Grot, R.: Relativistic continuum theory for the interaction of electromagnetic fields with deformable bodies. J. Math. Phys. 11, 109–113 (1971)

    Article  ADS  Google Scholar 

  • Grot, R., Eringen, A.C.: Relativistic continuum mechanics. Part I - Mechanics and thermodynamics. Int. J. Eng. Sci. 4, 611–638 (1966)

    Article  Google Scholar 

  • Gruber, A., Toda, M., Tran, H.: On the variation of curvature functionals in a space form with application to a generalized Willmore energy. Ann. Glob. Anal. Geom. 56, 147–165 (2019)

    Article  MathSciNet  Google Scholar 

  • Hartle, J.B., Sorkin, R.: Boundary terms in the action for the Regge calculus. Gen. Rel. Grav. 13, 541–549 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Hayward, G.: Gravitational action for spacetimes with nonsmooth boundaries. Phys. Rev. D 47, 3275 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Hamiltonian structure of continuum mechanics in material, inverse material, spatial, and convective representations. In: Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics. Sém. Math. Supér., vol. 100, pp. 11–124. Presses Univ. Montréal, Montréal (1986)

  • Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  Google Scholar 

  • Israel, W.: Singular hypersurfaces and thin shells in general relativity. Il Nuovo Cimento B Series 10 44(1), 1–14 (1966)

    Article  MathSciNet  Google Scholar 

  • Khalatnikov, I.M., Lebedev, V.V.: Relativistic hydrodynamics of a superfluid liquid. Phys. Lett. A 91, 70 (1982)

    Article  ADS  Google Scholar 

  • Kijowski, J., Magli, G.: Relativistic elastomechanics as a Lagrangian field theory. J. Geom. Phys. 9, 201–223 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Lebedev, V.V., Khalatnikov, I.M.: Relativistic hydrodynamics of a superfluid. Zh. Eksp. Teor. Fiz. 56, 1601–1614 (1982)

    ADS  Google Scholar 

  • Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Gravitational action with null boundaries. Phys. Rev. D 94, 084046 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Lewis, D., Marsden, J.E., Montgomery, R., Ratiu, T.S.: The Hamiltonian structure for dynamic free boundary problems. Physica D 18, 391–404 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l’Electromagnétisme. Masson (1955)

  • Liu, I.: On representations of anisotropic invariants. Int. J. Eng. Sci. 20(10), 1099–1109 (1982)

    Article  MathSciNet  Google Scholar 

  • Lobo, F.S.N., Simpson, A., Visser, M.: Dynamic thin-shell black-bounce traversable wormholes. Phys. Rev. D 101, 124035 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Lu, J., Papadopoulos, P.: A covariant constitutive description of anisotropic non-linear elasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 51, 204–217 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice Hall, New York (1983). ((reprinted by Dover, New York, 1994))

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S., Weinstein, A.: Semidirect product and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177 (1984)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.E., Scheurle, J.: The reduced Euler-Lagrange equations. Fields Institute Comm. 1(6), 139–164 (1993)

    MathSciNet  Google Scholar 

  • Marsden, J.E., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7(1–3), 305–323 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Maugin, G.A.: Magnetized deformable media in general relativity. Ann. de l’I.H.P., Sect. A 15(4), 275–302 (1971)

    MathSciNet  Google Scholar 

  • Maugin, G.A.: Micromagnetism. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3. Academic Press, New York (1972a)

    Google Scholar 

  • Maugin, G.A.: An action principle in general relaivistic magnetohydrodynamics. Ann. de l’I.H.P., Sect. A 16(3), 133–169 (1972b)

    Google Scholar 

  • Maugin, G.A.: On the covariant equations of the relativistic electrodynamics of continua. III. Elastic solids. J. Math. Phys. 19, 1212 (1978a)

    Article  ADS  Google Scholar 

  • Maugin, G.A.: Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann. de l’I.H.P., Sect. A 28(2), 155–185 (1978b)

    MathSciNet  Google Scholar 

  • Maugin, G.A., Eringen, A.C.: Polarized elastic materials with electronic spin - a relativistic approach. J. Math. Phys. 13, 1777–1788 (1972a)

    Article  ADS  CAS  Google Scholar 

  • Maugin, G.A., Eringen, A.C.: Relativistic continua with directors. J. Math. Phys. 13, 1788–1797 (1972b)

    Article  ADS  CAS  Google Scholar 

  • Mazer, A., Ratiu, T.S.: Hamiltonian formulation of adiabatic free boundary Euler flows. J. Geom. Phys. 6, 271–291 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Mazzucato, A.L., Rachele, L.V.: Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media. J. Elast. 83(3), 205–245 (2006)

    Article  MathSciNet  Google Scholar 

  • Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)

    Google Scholar 

  • Münch, J.: Effective quantum dust collapse via surface matching. Class. Quantum Grav. 38, 175015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Neiman, Y.: On-shell actions with lightlike boundary data, (2012) arXiv:1212.2922

  • O’Brien, S., Synge, J.L.: Comm. Dublin Inst. Adv. Stud. Ser. A 9, 1 (1952)

  • Parattu, K., Chakraborty, S., Majhi, B.R., Padmanabhan, T.: A boundary term for the gravitational action with null boundaries. Gen. Rel. Grav. 48(94), 1–28 (2016)

    MathSciNet  Google Scholar 

  • Schutz, B.F.: Perfect fluids in general relativity: velocity potentials and a variational principle. Phys. Rev. D 2(12), 2762–2773 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  • Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material, spatial and convective representations of solids, rods and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)

    Article  Google Scholar 

  • Sozio, F., Yavari, A.: Riemannian and Euclidean material structures in anelasticity. Math. Mech. Solids 25(6), 1267–1293 (2020)

    Article  MathSciNet  Google Scholar 

  • Taub, A.H.: General relativistic variational principle for perfect fluids. Phys. Rev. 94(6), 1468–1470 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  • Visser, M.: Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 328, 203 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Visser, M.: Traversable wormholes: some simple examples. Phys. Rev. D 39, 3182 (1989)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • York, J.W.: Role of conformal three geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082 (1972)

    Article  ADS  Google Scholar 

  • Zheng, Q.S., Spencer, A.J.M.: Tensors which characterize anisotropies. Int. J. Eng. Sci. 31(5), 679–693 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gay-Balmaz.

Additional information

Communicated by Paul Newton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay-Balmaz, F. General Relativistic Lagrangian Continuum Theories Part I: Reduced Variational Principles and Junction Conditions for Hydrodynamics and Elasticity. J Nonlinear Sci 34, 46 (2024). https://doi.org/10.1007/s00332-024-10019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10019-5

Mathematics Subject Classification

Navigation